Tìm p,q nguyên tố sao cho (p+q)(2q-1)=4pq
tìm số nguyên tố q;p sao cho:4pq-3(p+q)=59
tìm các số nguyên tố p q sao cho p^q+q^p=(2p+q+1)(2q+p+1)
Ta có:
p2−2q2=1⇒p2=2q2p2−2q2=1⇒p2=2q2mà p lẻ. Đặt p = 2k + 1 (k là số tự nhiên)
Ta có:
(2k+1)2=2q2+1⇒q2+1=2k(k+1)⇒q=2(2k+1)2=2q2+1⇒q2+1=2k(k+1)⇒q=2(vì q là số nguyên tố) tìm được p = 3
Vậy: (p;q)∈{3;2}
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
Tìm số nguyên tố p, q sao cho;
\(p^2-2q^2=1\)
Tìm các cặp số nguyên tố (p,q) sao cho \(p^2-2q^2=1\)
Ta có:
\(p^2-2q^2=1\Rightarrow p^2=2q^2\)mà p lẻ. Đặt p = 2k + 1 (k là số tự nhiên)
Ta có:
\(\left(2k+1\right)^2=2q^2+1\Rightarrow q^2+1=2k\left(k+1\right)\Rightarrow q=2\)(vì q là số nguyên tố) tìm được p = 3
Vậy: \(\left(p;q\right)\in\left\{3;2\right\}\)
\(p^2-2q^2=1\)
\(\Rightarrow p^2=2q^2+1\)
Do \(2q^2+1\)lẻ
\(\Rightarrow p^2\)là số chính phương lẻ
Đặt \(p=2k+1\)
\(\Rightarrow\left(2k+1\right)^2=2q^2+1\)
\(\Rightarrow4k^2+4k+1=2q^2+1\)
\(\Rightarrow2k^2+2k=q^2\)
\(\Rightarrow2k\left(k+1\right)=q^2\)
Do q là số chính phương => k hoặc k + 1 bằng 2
=> k => p => q
Kết luận.....
Tìm tất cả cặp số nguyên tố (p,q) sao cho p2-2q2=1
Tìm 2 số nguyên tố p, q sao cho (5p - 2p)(5q - 2q) chia hết cho p.q
( Đề Bình Phước 2019 ) Tìm số nguyên tố q,p sao cho : \(p^2-2q^2=41\)
\(p^2+2q^2=41\Rightarrow41-2q^2=p^2\Rightarrow p^2\) là số lẻ
=> p=2k+1 (k thuộc N*), thay vào=> q2=2k(k+1)-20
=> q chẵn mà q là số nguyên tối nên q=2
=> p2=49 => p=7
a,cho 2^m -1 là số nguyên tố . Chứng minh m là số nguyên tố
b,tìm 3 số nguyên tố p,q,r sao cho p+r=2q và hiệu p-q là số tự nhiên không chia hết cho 6.
c, tìm m,n là các số tự nhiên để A là số nguyên tố
A=\(3^{3m^2+6n-61}+4\)
tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)
Tìm các cặp số nguyên tố (p;q) thỏa mãn:
p mũ 2 - 2q mũ 2 = 1
\(p^2-2q^2=1\)
\(\Rightarrow p^2=2q^2+1\)
\(\Rightarrow p\) là số lẻ
Đặt \(p=2n+1\Rightarrow p^2=4n^2+4n+1\)
mà \(p^2=2q^2+1\)
\(\Rightarrow4n^2+4n+1=2q^2+1\)
\(\Rightarrow2\left(2n^2+2n\right)=2q\)
\(\Rightarrow2n^2+2n=q\)
\(\Rightarrow2\left(n^2+n\right)=q\)
\(\Rightarrow q\) là số chẵn
mà \(q\) là số nguyên tố
\(\Rightarrow q=2\)
\(\Rightarrow p^2=2.2^2+1=9\Rightarrow p=3\)
Vậy \(\left(p;q\right)\in\left\{3;2\right\}\) thỏa mãn đề bài
Ta có: \(p^2-2q^2=1\)
Do 1 là số lẻ nên \(2q^2\) chẵn và \(p\) lẻ
\(\Rightarrow p^2-1=2q^2\)
\(\Leftrightarrow\left(p-1\right)\left(p+1\right)=2q^2\)
Mà \(p\) lẻ nên \(p+1,p-1\) đều là chẵn
\(\Rightarrow\left(q-1\right)\left(q+1\right)\) ⋮ 4
\(\Leftrightarrow q^2\) ⋮ 2 \(\Rightarrow q\) ⋮ 2 \(\Rightarrow q=2\)
\(\Rightarrow p^2=2\cdot2^2+1=9\Rightarrow q=3\)
Vậy: (q;p) là (2;3)
⇔ @Phong cho mình hỏi đây là gì ạ