Những câu hỏi liên quan
NH
Xem chi tiết
ND
25 tháng 2 2023 lúc 20:52

Ta có : \(A\text{=}\dfrac{2023^{2023}}{2023^{2024}}\text{=}\dfrac{1}{2023}\)

và \(B\text{=}\dfrac{2023^{2022}}{2023^{2023}}\text{=}\dfrac{1}{2023}\)

\(\Rightarrow A\text{=}B\)

Bình luận (0)
HT
25 tháng 2 2023 lúc 20:58

Ta có :

A=\(\dfrac{2023^{2023}}{2023^{2024}}\)=\(\dfrac{2023^{2022}.2023}{2023^{2023}.2023}\)=\(\dfrac{2023^{2022}}{2023^{2023}}\)

Mà B=\(\dfrac{2023^{2023}}{2023^{2024}}\)

Vậy A=B

Bình luận (0)
PM
Xem chi tiết
PM
18 tháng 10 2023 lúc 21:10

giúp tui với ae!

Bình luận (0)
NM
Xem chi tiết
KL
16 tháng 3 2023 lúc 17:30

2023²⁰²³ - 2023²⁰²² = 2023²⁰²².(2023 - 1) = 2023²⁰²².2022

2023²⁰²² - 2022²⁰²¹ = 2023²⁰²¹.(2023 - 1) = 2023²⁰²¹.2022

Do 2022 > 2021 ⇒ 2023²⁰²² > 2023²⁰²¹

⇒ 2023²⁰²².2022 > 2023²⁰²¹.2022

Vậy 2023²⁰²³ - 2023²⁰²² > 2023²⁰²² - 2023²⁰²¹

Bình luận (0)
LN
Xem chi tiết
NT
11 tháng 9 2023 lúc 12:35

Ta có :

\(\dfrac{10^{2023}}{10^{2024}}=\dfrac{10^{2022}}{10^{2023}}\)

mà \(\dfrac{10^{2023}}{10^{2024}}>\dfrac{10^{2023}-3}{10^{2024}-3}\)

     \(\dfrac{10^{2022}}{10^{2023}}< \dfrac{10^{2022}+1}{10^{2023}+1}\)

\(\Rightarrow\dfrac{10^{2023}-3}{10^{2024}-3}< \dfrac{10^{2022}+1}{10^{2023}+1}\)

Bình luận (0)
H24
Xem chi tiết
MH
26 tháng 9 2023 lúc 20:54

\(A=\dfrac{10^{2024}+1}{10^{2023}+1}=\dfrac{10\left(10^{2023}+1\right)}{10^{2023}+1}-\dfrac{9}{10^{2023}+1}=1-\dfrac{9}{10^{2023}+1}\)

\(B=\dfrac{10^{2023}+1}{10^{2022}+1}=\dfrac{10\left(10^{2022}+1\right)}{10^{2022}+1}-\dfrac{9}{10^{2022}+1}=1-\dfrac{9}{10^{2022}+1}\)

Vì \(\dfrac{9}{10^{2023}+1}< \dfrac{9}{10^{2022}+1}\)

\(\Rightarrow A>B\)

Bình luận (0)
MO
7 tháng 11 2024 lúc 20:39

nhầm rồi bạn hiếu ơi

Bình luận (0)
TQ
Xem chi tiết
LM
Xem chi tiết
NL
17 tháng 3 2023 lúc 20:06

Để chứng minh rằng tồn tại một số có dạng 20232023...2023 chia hết cho 19, ta sẽ chứng minh rằng tồn tại một số nguyên n sao cho số nguyên s có dạng sau chia hết cho 19:

s = 20232023...2023 (n chữ số 2023)

Ta có thể biểu diễn s dưới dạng:

s = 2023 x 10⁰ + 2023 x 10¹ + 2023 x 10² + ... + 2023 x 10^(n-1)

= 2023 x (10⁰ + 10¹ + 10² + ... + 10^(n-1))

Để dễ dàng chứng minh, ta sẽ tính tổng sau đây:

10⁰ + 10¹ + 10² + ... + 10^(n-1) = (10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1) + n

= 111...1 (n số 1) + n

= (n + 1) x 111...1 (n số 1)

Do đó:

s = 2023 x (n + 1) x 111...1 (n số 1)

Ta có thể dễ dàng thấy rằng 19 chia hết cho 2023, do đó ta chỉ cần chứng minh rằng (n + 1) x 111...1 (n số 1) chia hết cho 19.

Ta có:

111...1 (n số 1) = (10⁰ + 10¹ + 10² + ... + 10^(n-1)) / 9

= [(10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1)] / 9

= [(n + 1) x 111...1 (n số 1)] / 9

Do đó:

s = 2023 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / 9

= 19 x 1064819 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / (19 x 9)

Như vậy, ta chỉ cần chọn một số nguyên n sao cho (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì 19 là số nguyên tố và không chia hết cho 3, nên ta có thể chọn n = 18, để (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì vậy, tồn tại một số có dạng 20232023...2023 (18 chữ số 2023) chia hết cho 19.

Bình luận (0)
LM
17 tháng 3 2023 lúc 20:14

cảm ơn bạn nghen

Bình luận (0)
NT
7 tháng 4 2023 lúc 20:06

bạn ơi tại sao 202320323...2023 lại được biểu diễn như câu trả lời

vd 2023 nhân 10^0 +2023 nhân 10^1=22253

Bình luận (0)
HH
Xem chi tiết
LB
Xem chi tiết
VP
13 tháng 9 2023 lúc 20:10

b) \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< 1\) ( Vì tử < mẫu )

Ta có: \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2023}+1+9}{10^{2024}+1+9}=\dfrac{10^{2023}+10}{10^{2024}+10}=\dfrac{10.\left(10^{2022}+1\right)}{10.\left(10^{2023}+1\right)}=\dfrac{10^{2022}+1}{10^{2023}+1}=N\)

Vì \(\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2022}+1}{10^{2023}+1}\) nên \(M< N\)

Bình luận (0)