So sánh biểu thức P= \(\dfrac{x+3}{\sqrt{x}}\) với 2.
Cho biểu thức P=\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
a) Rút gọn P.
b) Tính giá trị của P với x=\(\dfrac{1}{9}\)
c) So sánh P với \(\dfrac{1}{3}\)
a: \(P=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
b: Thay x=1/9 vào P, ta được:
\(P=\dfrac{1}{3}:\left(\dfrac{1}{9}+\dfrac{1}{3}+1\right)=\dfrac{1}{3}:\dfrac{1+3+9}{9}=\dfrac{1}{3}\cdot\dfrac{9}{13}=\dfrac{3}{13}\)
Cho biểu thức \(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)với \(x\ge0,x\ne25\)
Biểu thức A sau khi rút gọn là A = \(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
1) So sánh A với 2
Có \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=1-\dfrac{10}{\sqrt{x}+5}\)
Dễ thấy \(\dfrac{10}{\sqrt{x}+5}>0\forall x\Rightarrow A=1-\dfrac{10}{\sqrt{x}+5}< 1\)
=> A < 2
Cho 2 biểu thức \(P=\sqrt{x}-\dfrac{1}{\sqrt{x}}\) và \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\) với x = 0
a) Tính giá trị của biểu thức P khi x = 3
b) Chứng minh rằng \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
c) So sánh Q với 1
d) Biết \(S=\dfrac{P}{Q}\) Tính giá trị nhỏ nhất của biểu thức S
1)so sánh 2 số sau M=\(\sqrt{18}-\sqrt{8}\) và N=\(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
2)cho biểu thức A=\((\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}):(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}})\) với x>0,\(x\ne4\),\(x\ne9\)
câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm
1) So sánh:
N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)
M = \(\sqrt{18}-\sqrt{8}\)
\(=3\sqrt{2}-2\sqrt{2}\)
\(=\sqrt{2}\)
Ta có: \(1=\sqrt{1}\)
Mà 1 < 2
\(\Rightarrow\sqrt{1}< \sqrt{2}\)
Hay 1 \(< \sqrt{2}\)
Vậy N < M
2) Với \(x>0;x\ne4;x\ne9\), ta có:
A = \(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)
\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-4-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x-3}\right)}\)
\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-x}{x-2\sqrt{x}+2}\)
Bài 2:Cho biểu thức P=\(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\).\(\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)
a)Rút gọn BT
b)So sánh P với -\(2\sqrt{x}\)
a) \(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right).\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\left(đk:x>0\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\dfrac{1-x}{2\sqrt{x}}\right)^2=\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}.\dfrac{\left(x-1\right)^2}{4x}=\dfrac{-4\sqrt{x}\left(x-1\right)}{4x}=\dfrac{1-x}{\sqrt{x}}\)
b) \(P-\left(-2\sqrt{x}\right)=\dfrac{1-x}{\sqrt{x}}+2\sqrt{x}=\dfrac{1-x+2x}{\sqrt{x}}=\dfrac{1+x}{\sqrt{x}}>0\)
\(\Rightarrow P>-2\sqrt{x}\)
a, ĐK: \(x\ge0;x\ne1\)
\(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(2-2x\right)^2}{16x}\)
\(=\dfrac{-4\sqrt{x}}{x-1}.\dfrac{4\left(x-1\right)^2}{16x}\)
\(=-\dfrac{x-1}{\sqrt{x}}\)
a: Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)
\(=\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{4x}\)
\(=\dfrac{-4\sqrt{x}\left(x-1\right)}{4x}\)
\(=\dfrac{-x+1}{\sqrt{x}}\)
So sánh giá trj của biểu thức P với 1 biết \(P=\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}\)
ĐKXĐ: x>=0
\(P-1=\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}-1\)
\(=\dfrac{\sqrt{x}-2-2\sqrt{x}-1}{2\sqrt{x}+1}=\dfrac{-\sqrt{x}-3}{2\sqrt{x}+1}\)
\(=-\dfrac{\left(\sqrt{x}+3\right)}{2\sqrt{x}+1}< 0\)
=>P<1
Cho P= \(\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}\)
so sánh giá trị của biểu thức P với 1
Help me
ĐK: \(x\ge0\)
Lấy P - 1
\(\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}-1\)
\(=\dfrac{\sqrt{x}-2-2\sqrt{x}-1}{2\sqrt{x}+1}\)
\(=\dfrac{-\sqrt{x}-3}{2\sqrt{x}+1}\)
\(=\dfrac{-\left(\sqrt{x}+3\right)}{2\sqrt{x}+1}\)
Ta thấy \(\left\{{}\begin{matrix}\sqrt{x}+3>0\\2\sqrt{x}+1>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-\left(\sqrt{x}+3\right)< 0\\2\sqrt{x}+1>0\end{matrix}\right.\Rightarrow P-1< 0\)
Vậy \(P< 1\).
Cho biểu thức:
E = (\(\dfrac{1}{x+\sqrt{x}}\)+\(\dfrac{1}{\sqrt{x}+1}\)) : \(\dfrac{2}{\sqrt{x}-2}\)
a) Rút gọn E
b) Tính giá trị E khi x = 19 - \(8\sqrt{3}\)
c) tìm x để E = -1
d) Tìm x để E = \(\dfrac{1}{\sqrt{x}}\)
e) Tìm x để E > 0
f) So sánh E với \(\dfrac{1}{2}\)
g) Tìm x \(\in\) Z để \(\dfrac{1}{E}\)\(\in\) Z
h) Với x > 4. So sánh: E và \(\sqrt{E}\)
\(a,ĐK:x>0;x\ne4\\ E=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}-2}{2\sqrt{x}}\\ b,x=19-8\sqrt{3}=\left(4-\sqrt{3}\right)^2\\ \Leftrightarrow E=\dfrac{4-\sqrt{3}-2}{2\left(4-\sqrt{3}\right)}=\dfrac{\left(2-\sqrt{3}\right)\left(4+\sqrt{3}\right)}{26}=\dfrac{5-2\sqrt{3}}{26}\\ c,E=-1\Leftrightarrow\sqrt{x}-2=-2\sqrt{x}\\ \Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\dfrac{2}{3}\Leftrightarrow x=\dfrac{4}{9}\left(tm\right)\\ d,E=\dfrac{1}{\sqrt{x}}\Leftrightarrow\dfrac{\sqrt{x}-2}{2}=1\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(tm\right)\)
\(e,E>0\Leftrightarrow\sqrt{x}-2>0\left(2\sqrt{x}>0\right)\Leftrightarrow x>4\\ f,E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}=\dfrac{1}{2}-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\left(-\dfrac{1}{\sqrt{x}}< 0\right)\\ g,\dfrac{1}{E}=\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)+4}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(4\right)=\left\{-1;0;1;2;4\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;4;6\right\}\\ \Leftrightarrow x\in\left\{1;9;16;36\right\}\left(x\ne4\right)\\ h,x>4\Leftrightarrow\sqrt{x}-2>0\\ \Leftrightarrow E=\dfrac{\sqrt{x}-2}{2\sqrt{x}}>0\Leftrightarrow E\ge\sqrt{E}\)
Với M = \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\). So sánh biểu thức M với \(\sqrt{M}\) (ĐK: \(x\ge0\))
\(M=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=1-\dfrac{1}{\sqrt{x}+1}< =1\)
=>M<=căn M