chứng minh 20162016 + 20192019 chia hết cho 5
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng tồn tại số có dạng 20192019...201900...0 chia hết cho 2018
chứng minh rằng tồn tại số 20162016...2016 chia hết cho 2017
Xét 2018 số: 2016; 20162016; 201620162016;................; 20162016.........2016 (1)
2018 số 2016
Có 2018 số, mà chỉ có 2017 trường hợp về số dư trong phép chia cho 2017 nên theo nguyên lý Đi rích lê thì có ít nhất 2 số có cùng số dư khi chia cho 2017
Gọi 2 số đó là 20162016..........2016 và 20162016................2016 (1 <= m < n <= 2018)
m chữ số 2016 n chữ số 2016
Xét hiệu:
20162016............2016 - 20162016........2016 = 20162016.........2016.000000....0000
n chữ số 2016 m chữ số 2006 n - m cs 2016 4m chữ số 0
= 20162016........2016.104m chia hết cho 2017
Mà ƯCLN(104m,2017) = 1
=> 20162016.........2016 chia hết cho 2017
n - m cs 2016
Rõ ràng 20162016.......2016 là 1 số thuộc dãy (1)
n - m cs 2016
Vậy tồn tại 1 số gồm toàn cs 2016 chia hết cho 2017
\(\hept{\begin{cases}\\\\\end{cases}}\\ \gamma\)
Chứng minh rằng có thể tìm được một số tự nhiên có dạng 20162016...2016 chia hết cho 41.
Chứng minh rằng luôn tồn tại số có dạng 20162016...2016 (gồm các số 2016 viết liên tiếp nhau) chia hết cho 2017.
Xét các số :2016;20162016;..........;2016;...;2016(2018 số 2016)
Có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư
Giả sử số đó là 2016..........2016 (m số 2016) và 2016.......2016(n số 2016) (m;n E N m>n)
Suy ra 2016.........2016-2016.......2016 chia hết cho 2017
m số 2016 n số 2016
Suy ra 2016...........2016x1000
m-n số 2016
Mà (1000 n ;2017)=1
Suy ra 2016.......2016 chia hết cho 2017(m-n số 2016) (đpcm)
dùng dirichle, xét 2018 số 2016,20162016,....,20162016...2016(2018 số 2016) thì luôn tồn tại 2 số có hiệu chia hết cho 2017, gọi hai số đó là
20162016...2016(m số 2016) và 20162016...2016(n số 2016) trong đó 1≤m≤n≤20181≤m≤n≤2018
hiệu của chúng là 20162016...201600..0(n số 2016 và m-n số 0) chia hết cho 2017
rút 10m−n10m−n ra và để ý (10m−n;2017)=1(10m−n;2017)=1.
do đó ta có đpcm
Chứng minh luôn tồn tại số tự nhiên dạng : 20192019...2019 chia hết cho 2020
( mình làm bài này rồi nhưng thầy bảo nếu áp dụng dấu hiệu chia hết sẽ nhanh hơn nhưng mình không rõ lắm chỉ mình với ạ!?)
CTV vào giúp em với ạ!!
chứng minh rằng tồn tại số có dạng 20162016...2016 gồm k số 2016(k là số tự nhiên, 1<k<2018) chia hết cho 2017
CMR số có dạng 20162016...2016 chia hết cho 2017
số đó chia hết cho 2017
chả biết đúng không
đáp số số đó chia hết cho 2017
Ai giúp mình giai bài nay minh like cho
CMR luôn tồn tại số có dạng 20162016...2016 mà số đó chia hết cho 2017
cho C=5+5mũ 2 + 5 mũ 3+.....+5 mũ 20
a)chứng minh c chia hết cho 5
b)chứng minh c chia hết cho 6
c)chứng minh c chia hết cho 1
bài 3
cho C=1+3+3 mũ 2 +...+3 mũ 11.Chứng minh C chia hết 40
a) cho2a + 3b chia hết cho 5 chứng minh ( 3a + 2b ) chia hết cho 5
b) cho 7a + b chia hết cho 11 chứng minh ( 2a + 5b ) chia hết cho 11