Những câu hỏi liên quan
LT
Xem chi tiết
NT
28 tháng 7 2023 lúc 21:10

Đính chính câu A, phải cộng với 2 mới chia hết cho 3 (vì tổng số các chữ số bằng 3), nên theo đề cộng cho 3 không phù hợp, bạn xem lại đề câu a.

Bình luận (0)
NT
28 tháng 7 2023 lúc 20:57

Câu A

Ta có \(A=10^{2023}⋮10\)

Nên \(A+3⋮3\)

\(\Rightarrow dpcm\)

Bình luận (0)
NT
28 tháng 7 2023 lúc 21:07

Câu B

\(B=10^{789}\) có tổng các chữ số bằng 1

\(\Rightarrow B+8\) có tổng các chữ số bằng 9

\(\Rightarrow dpcm\)

 

Bình luận (0)
TV
Xem chi tiết
PL
27 tháng 7 2023 lúc 9:30

a, Dãy số trên có số số hạng là:

$(100-1):3+1=34$(số hạng)

Tổng dãy số trên là:

$(100+1)\times34:2=1717$

b, Dãy số trên có số số hạng là:

$(2023-3):5+1=405$(số hạng)

Tổng dãy số trên là:

$(2023+3)\times405:2=410265$

c, Dãy số trên có số số hạng là:

$(2002-2):4+1=501$(số hạng)

Tổng dãy số trên là:

$(2002+2)\times501:2=502002$

Bình luận (0)
LV
27 tháng 7 2023 lúc 9:30

Bài 2 tính

a) Dãy trên có số số hạng là:

( 100 - 1 ) : 3 + 1 = 34 

Tổng của dãy trên là:

( 100 + 1 ) x 34 : 2 = 1717

Đáp số: 1717

b) Dãy trên có số số hạng là:

( 2023 - 3 ) : 5 + 1 = 405

Tổng của dãy trên là:

( 2023 + 3 ) x 405 : 2 = 410265

c) Dãy trên có số số hạng là:

( 2002 - 2 ) : 4 + 1 = 501

Tổng của dãy trên là:

( 2002 + 2 ) x 501 : 2 = 502002

Bình luận (0)
TN
Xem chi tiết
H24
20 tháng 9 2019 lúc 21:21

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

Bình luận (0)
H24
Xem chi tiết
HT
Xem chi tiết
NH
15 tháng 2 2024 lúc 14:11

    Bài 1:

Vì viết thêm 3 chữ số vào bên phải số 345 được số mới chia hết cho 3;7;8 nên số mới là BC(3;7;8)

3 =  3; 7 = 7;  8  =  8; BCNN(3;7;8) = 3.7.8 = 168

Số mới có dạng: \(\overline{345abc}\) 

Theo bài ra Ta có: \(\overline{345abc}\) ⋮ 168

                  345000 + \(\overline{abc}\) ⋮  168

       2053.168 + 96 + \(\overline{abc}\)  ⋮ 168

                          96 + \(\overline{abc}\)  ⋮ 168

⇒ 96 + \(\overline{abc}\) \(\in\) B(168) = {0; 168; 336; 504; 672; 850; 1008;1176;...;}

⇒ \(\overline{abc}\) \(\in\) {-96; 72; 240; 336; 504; 682; 912; 1080;..;}

Vì 100 ≤ \(\overline{abc}\) ≤ 999

Vậy \(\overline{abc}\) \(\in\) {240; 336; 504; 682; 912}

Kết luận:... 

 

Bình luận (0)
NH
15 tháng 2 2024 lúc 14:13

Bài 2:

S = {1; 4; 7; 10;13;16...;}

Xét dãy số trên là dãy số cách đều với khoảng cách  là 

        4 - 1  = 3

Mà 2023 - 1 = 2022 ⋮ 3 vậy 

      2023 là phần tử thuộc tập S.

 

Bình luận (0)
NH
15 tháng 2 2024 lúc 14:54

Bài 3:

1 + 5 + 9 + 13 + 17 + ... + \(x\) = 4950

Xét vế trái, dãy số của vế trái là dãy số cách đều 

Số số hạng là : (x-1) : 4 + 1 

VT = (1+x)\([\)(x-1) : 4 + 1\(]\):2= (1 +\(x\))(\(x\) + 3): 8 = 4950

(1+\(x\))(x+3) = 4950 . 8 

(\(1+x\)).(\(x+3\)) = 39600

(1 + \(x\)).(\(x\) + 3) = 198.200

\(x\) + 1 = 198

\(x=197\)

 

 

 

 

 

 

Bình luận (0)
TA
Xem chi tiết
KN
7 tháng 8 2019 lúc 7:17

Làm mẫu câu b)

b) n là số tự nhiên nên n có 1 trong 2 dạng 2k hoặc 2k + 1

TH1: n = 2k

\(\Rightarrow\) \(\left(2k+5\right)\left(2k+8\right)=2\left(k+4\right)\left(2k+5\right)⋮2\)

TH1: n = 2k +1

\(\Rightarrow\left(2k+1+5\right)\left(2k+1+8\right)=2\left(k+3\right)\left(2k+9\right)⋮2\)

Bình luận (0)
NA
7 tháng 8 2019 lúc 7:21

a) Do (2n+5) là số lẻ,4n+2023 là số lẻ \(\Rightarrow\)(2n+5).(4n+2023) là số lẻ

\(\Rightarrow\)(2n+5).(4n+2023)  không chia hết cho 2

Vậy .................

Bình luận (0)
DT
22 tháng 12 2020 lúc 22:33

A ) Do 2n + 5 và 4n + 2023 đều là số lẻ 

Suy ra tích của 2n + 5 và 4n + 2023 là số lẻ

=> ko chia hết cho 2

B ) Do n là STN nên n có thể bằng 2k hoặc 2k - 1 ( có thể là 2k + 1 cững được )

Nếu n = 2k thì ( 2k - 5 ) . ( 2k - 8 ) = 2 . ( k - 4 ) . ( 2k - 5 ) chia hết cho 2

Nếu n = 2k + 1 thì ( 2k + 1 + 5 ) . ( 2k + 1 + 8 ) = 2 . ( k + 3 ) ( 2k + 9 ) chia hết cho 2

Vậy ..........................................................

CHÚC BẠN HỌC TỐT   ^_^   $_$

Bình luận (0)
 Khách vãng lai đã xóa
HV
Xem chi tiết
NH
7 tháng 10 2024 lúc 7:27

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

Bình luận (0)
NH
7 tháng 10 2024 lúc 8:51

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

Bình luận (0)
NH
7 tháng 10 2024 lúc 9:06

                           Bài 3: 

Đây là toán nâng cao chuyên đề tính chất chia hết của một tích, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                               Giải:

A = (n + 20132012).( n + 20122013)

TH1: Nếu n  là số chẵn ta có:

    2012 là số chẵn nên 20122013 là số chẵn suy ra n + 201213 là số chẵn. Mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số chẵn (1)

TH2: Nếu n là số lẻ ta có:

   2013 là số lẻ nên 20132012 là số lẻ khi đó ta có 

  n + 20132012 là số chẵn vì tổng của hai số lẻ là một số chẵn mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số lẻ (2)

Kết hợp (1) và (2) ta có:

A = (n + 20132012).(n + 20122013) ⋮ 2 ∀ n \(\in\) N

     

 

 

Bình luận (0)
VN
Xem chi tiết
H9
2 tháng 10 2023 lúc 18:14

Bài 3: 

a chia 36 dư 12 số đó có dạng \(a=36k+12\left(k\in N\right)\)

\(\Rightarrow a=4\left(9k+3\right)\) nên a chia hết cho 4

Mà: \(9k\) ⋮ 3 ⇒ \(9k+3\) không chia hết cho 3

Nên a không chia hết cho 3 

Bình luận (0)
H9
2 tháng 10 2023 lúc 18:21

Bài 4:

a) \(x\in B\left(7\right)\) \(\Rightarrow x\in\left\{0;7;14;21;28;35;42;49;...\right\}\)

Mà: \(x\le35\)

\(\Rightarrow x\in\left\{0;7;14;21;28;35\right\}\)

b) \(x\inƯ\left(18\right)\Rightarrow x\in\left\{1;2;3;6;9;18\right\}\)

Mà: \(4< x\le10\)

\(\Rightarrow x\in\left\{6;9\right\}\)

Bình luận (0)
H9
2 tháng 10 2023 lúc 18:32

Bài 5:

a) 6 chia hết cho x 

\(\Rightarrow x\inƯ\left(6\right)\)

\(\Rightarrow x\in\left\{1;2;3;6\right\}\)  

b) \(8\) chia hết cho \(x+1\)

\(\Rightarrow x+1\inƯ\left(8\right)\)

\(\Rightarrow x+1\in\left\{1;2;4;8\right\}\)

\(\Rightarrow x\in\left\{0;1;3;7\right\}\)

c) 10 chia hết cho \(x-2\)

\(\Rightarrow x-2\inƯ\left(10\right)\)

\(\Rightarrow x-2\in\left\{1;2;5;10\right\}\)

\(\Rightarrow x\in\left\{3;4;7;12\right\}\)

Bình luận (0)
DN
Xem chi tiết
NT
21 tháng 9 2015 lúc 22:12

b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)

=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)

=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)

=3+3^2.13+3^5.13+.........+3^58.13

=3.13.(3^2+3^5+....+3^58)

vi tich tren co thua so 13 nen tich do chia het cho 13

=

Bình luận (0)
NT
21 tháng 9 2015 lúc 22:02

bai1

a) A=(31+32)+(33+34)+...+(359+360)

=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)

=3^1.(1+3)+...+3^59.(1+3)

=3^1.4+....+3^59.4

=4.(3^1+...+3^59)

vi tich tren co thua so 4 nen tich do chia het cho 4

Bình luận (0)
NH
20 tháng 8 2016 lúc 5:07

Bài 2:(12a + 36b) = (12a + 12 x 3 x b) = 12( a + 3b)chia hết cho 12

Bình luận (0)