Những câu hỏi liên quan
NB
Xem chi tiết
ND
Xem chi tiết
HS
6 tháng 8 2019 lúc 19:58

Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

=> \(\frac{bz-cy}{a}=0\)nên bz - cy = 0 => bz = cy.Hay b/y = c/z   [1]

=> \(\frac{cx-az}{b}=0\)nên cx - az = 0 => cx = az . Hay c/z = a/x [2]

Từ 1 và 2 => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bình luận (0)
VG
Xem chi tiết
IB
Xem chi tiết
NH
13 tháng 7 2018 lúc 13:41

a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

\(\Rightarrow xy=5k.7k\)

\(\Rightarrow140=35k^2\)

\(\Rightarrow k^2=4\)

\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Với k = 2 ta có :

+) \(\frac{x}{5}=2\Rightarrow x=10\)

+) \(\frac{y}{7}=2\Rightarrow y=14\)

Với k = -2 ta có :

+) \(\frac{x}{5}=-2\Rightarrow x=-10\)

+) \(\frac{y}{7}=-2\Rightarrow y=-14\)

Vậy  \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)

b) Ta có :

\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

+) \(\frac{x}{2}=3\Rightarrow x=6\)

+) \(\frac{y}{5}=3\Rightarrow y=15\)

+) \(\frac{z}{7}=3\Rightarrow z=21\)

Vậy x = 6, y = 15 và z = 21

_Chúc bạn học tốt_

Bình luận (0)
NH
13 tháng 7 2018 lúc 13:23

a, x.y/5.7=140/35

=140/35=4

x/5=4/7

x/7=5/4

x.7=5.4

x.7=20

x=20;7

x=20/7

b,chịu

tk thì tk ko tk cx đc

Bình luận (0)
HN
13 tháng 7 2018 lúc 13:36

a, \(\frac{x}{5}=\frac{y}{7}\left(x.y=140\right)\)

Đặt \(\frac{x}{5}=\frac{y}{7}=k\)

\(\Rightarrow7x=5y\)

\(\Rightarrow x.y=7k.5k=35k^2=140\)

\(\Rightarrow k^2=4\Rightarrow k=\pm2\)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2.7=14\\y=2.5=10\end{cases}}\\\hept{\begin{cases}x=\left(-2\right).7=-14\\y=\left(-2\right).5=-10\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2.7=14\\y=2.5=10\end{cases}}\\\hept{\begin{cases}x=\left(-2\right).7=-14\\y=\left(-2\right).5=-10\end{cases}}\end{cases}}\)

Vậy ....

b, \(x:y:z=2:5:7\left(3x+2y-z=27\right)\)

Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)

\(\Leftrightarrow x=2k;y=5k=z=7k\)

\(\Leftrightarrow3x+2y-z=6k+10k-7k=27\)

\(\Leftrightarrow x=6;y=15;z=21\)

Vậy ...

Bình luận (0)
HS
Xem chi tiết
.
7 tháng 12 2019 lúc 15:36

b) Xx7,2-Xx6,2=201,6

    Xx(7,2-6,2)=201,6

   Xx1=201,6

   X=201,6:1

   X=201,6

Vậy X=201,6.

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
NT
Xem chi tiết
DN
12 tháng 3 2017 lúc 14:29

\(\Rightarrow x+1=0\) hoặc \(y-2=0\)

\(\Rightarrow x=-1\)                  \(y=2\)

\(Vậy\) \(x=-1;y=2\)

Bình luận (0)
NV
12 tháng 3 2017 lúc 14:26

x=-1 y=2 nha 

Bình luận (0)
DA
12 tháng 3 2017 lúc 14:35

X=-1

y=2

Bình luận (0)
HA
Xem chi tiết
LH
14 tháng 8 2018 lúc 20:54

a, Có \(\dfrac{3x-2y}{7}=\dfrac{4x+3y}{5}\)

=> 5(3x-2y)=7(4x+3y)

=> 15x-10y=28x+21y

=> 15x-28x=21y+10y

=> -13x=31y

=> \(\dfrac{x}{y}=\dfrac{31}{-13}=\dfrac{-31}{13}\)

b,\(\dfrac{5x-2y}{3x+4y}=\dfrac{-3}{4}\)

=> 4(5x-2y)=-3(3x+4y)

=> 20x-8y= -9x-12y

=> 20x+9x=-12y+8y

=> 29x=-4y

=> \(\dfrac{x}{y}=\dfrac{-4}{29}\)

Bình luận (0)
BN
Xem chi tiết
H24
1 tháng 6 2021 lúc 15:46

a,x2-y2-2x+2y
= (x+y)(x-y) - 2(x-y)
= (x-y)(x+y-2)
b,2x+2y-x2-xy
= 2(x+y) - x(x+y)
= (x+y)(2-x)
c,3a2-6ab+3b2-12c2
= 3(a2 - 2ab + b2 - 4c2)
= 3[(a-b)2 - 4c2)
= 3(a-b-2c)(a-b+2c)
d,x2-25+y2+2xy
= (x+y)2 - 25
= (x+y+5)(x+y-5)

e) a2+2ab+b2-ac-bc

= (a+b)2-c(a+b)

= (a+b)( a+b-c)

f) x2-2x-4x2-4y

= -3x2-2x-4y

= -(3x2+2x+4y)

g)x2y-x3-9y+9x

= x2(y-x)-9(y-x)

= (y-x)(x2-9)

h) x2(x-1)+16(1-x)

= x2(x-1)-16(x-1)

= (x-1)(x2-16)

= (x-1)(x-4)(x+4)

n) 81x2-6yz-9y2-z2

= (9x)2-[(3y)2+6yz+z2]

=(9x)2-(3y+z)2

=(9x+3y+z)(9x-3y-z)

m) xz- yz-x2+2xy-y2

= z(x-y)-(x2-2xy+y2)

= z(x-y)-(x-y)2

= (x-y)(z-x+y)

 p) x2 + 8x + 15

= x2 + 3x + 5x + 15

= x(x+3) + 5(x+3)

= (x+3)(x+5)

k) x2 - x - 12

= x2 + 3x - 4x - 12

= x(x+3) - 4(x+3)

= (x+3)(x-4)

Bình luận (0)