Cho a,b,c biết a,b,c thuộc N.Biết:
a^b=b^c=c^a
Tính a^2016/b^2016 - c^2017+d^2017
Cho các số nguyên dương a,b,c,d và \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng: \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
CHO CÁC SỐ DƯƠNG a,b,c khác d và \(\frac{a}{b}=\frac{c}{d}\)
CMR. \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-b^{2017}\right)^{2016}}\)
bài này dễ vào TH 0,5 điểm trong bài thi
nghe có vẻ khó nhưng chú ý 1 chút là có thể làm được
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}\)\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}\)
áp dụng t/c dãy t/s = nhau
\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}=\)\(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)
biến đổi tiếp cái kia tương tự rồi suy ra chúng = nhau nhé
cho a,b,c thoả mãn a^2016+b^2016+c^2016=a^2017+b^2017+c^2017=1. Tính B=a^2015+b^2016+c^2017
Cho các số a,b,c,d khác 0. Tính
T= x^2017 + y^2017+z^2017+t^2017
Biết x,y,z,t thỏa mãn :
x^2016+y^2016+z^2016+t^2016/a^2+b^2+c^2+d^2=x^2016/a^2+y^2016/b^2+z^2016/c^2+t^2016/d^2
Cho các số a,b,c,d khác 0. Tính \(T=x^{2017}+y^{2017}+z^{2017}+t^{2017}\)
Biết x,y,z,t thỏa mãn: \(\dfrac{x^{2016}+y^{2016}+z^{2016}+t^{2016}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2016}}{a^2}+\dfrac{y^{2016}}{b^2}+\dfrac{z^{2016}}{c^2}+\dfrac{t^{2016}}{d^2}\)
Cho a,b,c,d thuộc R thỏa a+b=-2016; c+d=-2017; ab=cd=2. Tính (a+c)(b-c)(a+d)(b-d)
Cho a, b, c, khác 0. Tính giá trị biểu thức :\(A=x^{2017}+y^{2017}+z^{2017}\)
biết x,y,z thỏa mãn:
\(\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\)
cho a,b, c thuộc R biết a^2+b^2+c^2=ab+bc+ca. tính A=(a-b)^2015+(b-c)^2016+(c-a)^2017
\(a^2+b^2+c^2=ab+bc+ca\\ \Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ Vì\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\in R\\\left(b-c\right)^2\ge0\forall b,c\in R\\\left(c-a\right)^2\ge0\forall c,a\in R\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\\ \Rightarrow a=b=c\\ Khiđó:A=0\)
Chứng minh rằng: \(\frac{a+2016.c}{b+2016.d}=\frac{a+2017.c}{b+2017.d}\)