hãy so sánh 2023^20 + 2023^19 và 2024^20 đó làm dược bày tui với
cho a =1/3 - 2/3*2 + 3/3*3 - 4/3*4 + 5/3*5 - ...... + 2023/3*2023 - 2024/3*2024 hãy so sánh a với 20/3
So sánh :
a, 2023^2024 và 2023^2023
b,17^2024 và 18^2024
giúp tớ với !!! tớ gấp lắm rồi!
a) \(2023^{2024}\) và \(2023^{2023}\)
vì 2024 > 2023 nên 20232024 > 20232023
Vậy 20232024 > 20232023
b) \(17^{2024}\) và \(18^{2024}\)
vì 17 < 18 nên 172024 < 18 2024
Vậy 172024 < 182024
bài 7 so sánh A và B
A=2022/2023 + 2023/2024 B=2022+2023/2023+2024
Giúp mình với!!!
So sánh A=\(\dfrac{2024^{2023}+1}{2024^{2024}+1}\) và B=\(\dfrac{2024^{2022}+1}{2024^{2023}+1}\)
Cám ơn các bạn!
\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)
\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)
\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)
\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)
Vì \(2024>2023=>2024^{2024}>2024^{2023}\)
\(=>2024^{2024}+1>2024^{2023}+1\)
\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)
\(=>A< B\)
\(#PaooNqoccc\)
So sánh các cặp số sau:
\dfrac{ -2024 }{ 2023 } và \dfrac{ -2023 }{ 2024 }
-2024/2023<-1
-1<-2023/2024
=>-2024/2023<-2023/2024
a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)
\(\dfrac{154}{155}>\dfrac{154}{155+156}\)
\(\dfrac{155}{156}>\dfrac{155}{155+156}\)
=>154/155+155/156>(154+155)/(155+156)
=>A>B
b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)
2021/2022>2021/6069
2022/2023>2022/2069
2023/2024>2023/6069
=>D>C
hãy so sánh mỗi số sau
a) \(0,75^{-2,3}\) và \(0,75^{-2,4}\)
b) \(\left(\dfrac{1}{4}\right)^{2023}\) và \(\left(\dfrac{1}{4}\right)^{2024}\)
c) \(\left(3,5\right)^{2023}\) và \(\left(3,5\right)^{2024}\)
a: \(0,75< 1\)
=>Hàm số \(y=0,75^x\) nghịch biến trên R
mà -2,3>-2,4
nên \(0,75^{-2,3}< 0,75^{-2,4}\)
b: \(\dfrac{1}{4}< 1\)
=>Hàm số \(y=\left(\dfrac{1}{4}\right)^x\) nghịch biến trên R
mà 2023<2024
nên \(\left(\dfrac{1}{4}\right)^{2023}>\left(\dfrac{1}{4}\right)^{2024}\)
c: Vì 3,5>1
nên hàm số \(y=3,5^x\) đồng biến trên R
mà 2023<2024
nên \(3,5^{2023}< 3,5^{2024}\)
So sánh
a)17/20 và 18/19 b)19/18 và 2023/2022
c)13/17 và 135/175 d)53/63 và 535/636
e)13/15 và 22/25 \(\dfrac{2023}{2023^2+1}và\dfrac{2022}{2022^2+1}\)
a) \(\dfrac{17}{20}< \dfrac{18}{20}< \dfrac{18}{19}\Rightarrow\dfrac{17}{20}< \dfrac{18}{19}\)
b) \(\dfrac{19}{18}>\dfrac{19+2024}{18+2024}=\dfrac{2023}{2022}\Rightarrow\dfrac{19}{18}>\dfrac{2023}{2022}\)
c) \(\dfrac{135}{175}=\dfrac{27}{35}\)
\(\dfrac{13}{17}=\dfrac{26}{34}< \dfrac{26+1}{34+1}=\dfrac{27}{35}\)
\(\Rightarrow\dfrac{13}{17}< \dfrac{135}{175}\)