Cho hình vuông ABCD có AC = 10 cm . Tính độ dài đoạn thẳng BD
Cho hình thang ABCD vuông tại A và D. Cho biết AB = 15cm, AD = 20cm, các đường chéo AC và BD vuông góc với nhau ở O. Tính :
a, Độ dài các đoạn thẳng OB và OD
b, Độ dài đoạn thẳng AC
c, Diện tích hình thang ABCD
a, Áp dụng các hệ thức lượng trong tam giác vuông ABD, tính được BD = 25cm, OB = 9cm, OD = 16cm
b, Áp dụng các hệ thức lượng trong tam giác vuông DAC tính được OA = 12cm, AC = 100 3 cm
c, Tính được S = 1250 3 c m 2
Cho hình thang cân ABCD, đường chéo BD vuông góc vuông góc với cạnh bên Bc. Cho AD=6 cm, CD= 10 cm. Tính độ dài AC
1:Cho tam giác ABC vuông tại A,có:AB=6 cm,AC =8 cm,đường cao AH .Đường phân giác BD cắt AH tại 1 (D ϵAC).
a,Tính độ dài các đoạn thẳng BC,AD và DC.
b,Chứng minh:ΔABD ∼ ΔHBI
2:Cho hình lăng trụ đứng ABCD A'B'C'D'' có ABCD là hình chữ nhật.Tính thể tích của hình lăng trụ,biết AA' =8 cm,AB=3 cm,AC=5 cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a) Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC=8(cm)(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: AD=3cm; CD=5cm
b) Xét ΔABD vuông tại A và ΔHBI vuông tại H có
\(\widehat{ABD}=\widehat{HBI}\)(BI là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD\(\sim\)ΔHBI(g-g)
Bài 1: Cho hình vuông ABCD cạnh 4cm. Tính độ dài các đường chéo AC, BD.
Bài 2: Cho hình chữ nhật ABCD có AB cm AD cm = = 3 , 27 . Tính độ dài AC.
Bài 3: Cho ABC vuông tại A, AH ⊥ BC tại H. Tính độ dài các cạnh của tam giác ABC biết AH cm HB cm HC cm = = = 6 , 4 , 9
Cho hình chữ nhật ABCD có chu vi là 28 cm chiều rộng AD là 5 cm a Tính diện tích hình chữ nhật ABCD B trên cạnh AB lấy điểm E sao cho độ dài đoạn thẳng AB bằng một nửa độ dài đoạn thẳng AB tính diện tích hình thang ABCD C Kẻ BD cắt EC tại O so sánh diện tích hình tam giác EOD và BOC các bạn giúp mình nhé mình đang vội
Cho hình thang ABCD có đáy AB,AC cắt BD tại O
a.Hãy chứng tỏ Saod=Sboc
b.Tìm tỷ số độ dài của đoạn thẳng BO và OD
C.CHo Saob=36 cm mét vuông và Scod=64 cm mét vuông.Tính diện tích hình thang ABCD
a) Vẽ hình chữ nhật ABCD có chiều dài 4 cm, chiều rộng 3 cm. Sau đó nối đỉnh A với đỉnh C, đỉnh B, đỉnh D.
b) Đo chiều dài đoạn thẳng
AC, BD rồi viết số thích hợp vào chỗ chấm:
- AC = …….. cm
- BD = …….. cm
c) Nhận xét:
Độ dài AC …… độ dài BD
(AC, BD là hai đường chéo của hình chữ nhật)
a) Vẽ hình chữ nhật ABCD có chiều dài 4 cm, chiều rộng 3 cm. Sau đó nối đỉnh A với đỉnh C, đỉnh B, đỉnh D.
b) Đo chiều dài đoạn thẳng
AC, BD rồi viết số thích hợp vào chỗ chấm:
- AC = 5 cm
- BD = 5 cm
c) Nhận xét:
Độ dài AC = độ dài BD
(AC, BD là hai đường chéo của hình chữ nhật)
Cho hình thang cân ABCD có AB // CD và AB < CD, đường chéo BD vuông góc với cạnh bên BC, đường cao BH. a) Chứng minh tam giác BDC và tam giác HBC đồng dạng. b) Cho BC = 6 cm; DC = 10 cm. Tính độ dài đoạn thẳng HC , HD. c) Chứng minh : HB2 = HD.HC
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
Do đo: ΔBDC\(\sim\)ΔHBC
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
HD=10-3,6=6,4(cm)
Bài 1 Cho hình vuông ABCD cạnh 4cm. Tính độ dài các đường chéo AC, BD
.Bài 2 Cho hình chữ nhật ABCD có AB=3cm AD=\(\sqrt{27}\) cm . Tính độ dài AC.\
Bài 3 Cho ABC vuông tại A, AH ⊥ BC tại H. Tính độ dài các cạnh của tam giác ABC biết AH=6 cm HB=4 cm HC=9 cm .
Bài 1 :
Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)
\(\Rightarrow AB=BC=CD=AD=4\)cm
Áp dụng định lí pytago tam giác ADC vuông tại D ta có :
\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm
Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm
Bài 2 :
Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)
Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :
\(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm
Bài 3 :
Áp dụng định lí Pytago cho tam giác ABH vuông tại H ta có :
\(AB^2=BH^2+AH^2=16+36=52\Rightarrow AB=2\sqrt{13}\)cm
Áp dụng định lí Pytago cho tam giác ACH vuông tại H ta có :
\(AC^2=CH^2+AH^2=81+36=117\Rightarrow AC=3\sqrt{13}\)cm
\(BC=CH+BH=9+4=13\)cm