Cho tổng S=1+2+3+4+...+99. Chứng tỏ S chia hết cho 9
cho tổng
s=1+3+32+33+34+...+399
tính tổng của s
chứng tỏ rằng s chia hết cho 4
S = (1 + 3) + (32+33)+.....+(398+399)
= 4 + 32 .(1 + 3) + .....+398.(1+3)
= 1 .4 + 32.4 + ..... +398.4
= 4.(1 + 32 + .... +398) chia hết cho 4
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
1 Cho S = 2 + 2^2 + 2^3 + 2^4 + ............+ 2^10 Chứng tỏ chia hết cho 3
1 Chứng tỏ rằng 1+ 3+ 3^2 +3^3 +............+ 3^99 chia hết cho 40
a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210
= (2 + 22) + (23 + 24) +.....+ (29 + 210)
= 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)
= 3.(2 + 23 +.... + 29) chia hết cho 3
=> S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)
b) 1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40 (đpcm)
BÀI 1:
S = 2 + 22 + 23 + 24 + ..... + 210
= (2 + 22) + ( 23 + 24) + ..... + (27 + 28) + (29 + 210)
= 2(1 + 2) + 23(1 + 2) + ..... + 27(1 + 2) + 29(1 + 2)
= 3(2 + 23 + .... + 27 + 29) \(⋮3\)
BÀI 2:
1 + 3 + 32 + 33 + ....... + 399
= (1 + 3 + 32 + 33) + ..... + (396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33) + ..... + 396(1 + 3 + 32 + 33)
= 40(1 + 34 + ..... + 396) \(⋮40\)
cho tổng
S=1+3+32+33+....+399
a} tính tổng của S
b chứng tỏ rằng S chia hết cho 4
a) S= 1+3+32+33+...+399
3S= 3.(1+3+32+33+...+399)
3S= 3+32+33+34+...+3100
3S - S =2S= 3100-1
Vậy S= \(\frac{3^{100}-1}{2}\)
1.Tính: S=1*2+2*3+3*4+...+99*100
2.Chứng tỏ: 9n+1 không chia hết cho 100
bai 1:
=>3S + 1.2.3+2.3.3+...+99.100.3
=>1.2.3+2.3(4-1)+3.4(5-2)+...+99.100(101-98)
=>1.2.3+2.3.4-1.2.3+3.4.5+-2.3.4+...+99.100.101-98.100.101
=>99.100.101=999900
=>S=333300
1*2=1/3*(1*2*3-0*1*2)
2*3=1/3(2*3*4-1*2*3)
3*4=1/3(3*4*5-2*3*4)
...
99*100=1/3(99*100*101-98*99*100)
ta đi triệt tiêu, ta thấy trong ngoặc phép tính trên ở trong ngoặc có biểu thức đầu bị biểu thức sau của phép tính dưới triệt tiêu đi nên:
B=99*100*101/3
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
Bài 1: chứng tỏ rằng tổng S= 5 + 5^2 + 5^3 +............+ 5^99 + 5^100 chia hết cho 6.
Ta có : S = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 599 + 5100 )
= 5 ( 1 + 5 ) + 53 ( 1 + 5 ) + ..... + 599 ( 1 + 5 )
= 5.6 + 53.6 + .... + 599.6
= 6 ( 5 + 53 + ... + 599 )
Vì 6 chia hết cho 6 nên 6 ( 5 + 53 + ... + 599 ) chia hết cho 6
Hay S chia hết cho 6 ( đpcm )
Ta có A=5+52+53+...+599+5100=(5+52)+(53+54)+...+(599+5100)
A=5.(1+5)+53.(1+5)+599.(1+5)
A=5.6+53.6+...+599.6
A=6.(5+53+...+599) sẽ chia hết cho 6
mik nha bài nay mik làm HSG lớp 6 quen rùi!!!!!
1) cho S = 1 + 2 + 22 + 23 + 24 + ... + 299
a) chứng tỏ S chia hết cho 3
b) tìm n e N biết S + 1 = 4n+2
2) thay (*) bởi các chữ số nào để : 859*9 chia hết cho 11
1)
a)Ta có:
S=1+2+22+.....+299
S=(1+2)+(22+23)+...+(298+299)
S=3+2(1+2)+...+298(1+2)
S=3+2.3+...+298.3
S=3(1+2+...+298)\(⋮\)3
Vậy S\(⋮\)3
b)Ta có:
S=1+2+22+.....+299
2S=2+22+23+...+2100
2S-S=(2+22+23+...+2100)-(1+2+22+.....+299)
S=2+22+23+...+2100-1-2-22-.....-299
S=2100-1
S+1=2100-1+1
S+1=2100
S+1=(22)50
S+1=450=4n+2
=>n+2=50
=>n=48
Vậy n=48
Cho S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27. Chứng tỏ rằng S chia hết cho 3
Tính S= 1 – 2 + 3 – 4 + 5 – 6 + 7 – 8 + … + 99 – 1
mik ko hỉu cho lăm:<
S=(1+2)+...+2^6(1+2)=3(1+...+2^6)⋮3
Chứng tỏ tổng S chia hết cho 50: S=(x-1)+(x-3)+(x-5)+...+(x-99)
Giải chi tiết nha!
S = (x - 1) + (x - 3) + (x - 5) +...+ (x - 99)
S = (x + x + x +...+ x) - (1 + 3 + 5 +...+ 99)
Tổng 1 Tổng 2
Số số hạng của tổng 2 cũng như tổng 1 là:
(99 - 1) : 2 + 1 = 50 (số)
Ta có:
S = 50x + (99 + 1).50 : 2
S = 50x + 100.50 : 2
S = 50x + 2500
S = 50(x + 50) chia hết cho 50
cho S=2+2^2+2^3+2^4+2^5+...+2^98+2^99.Chứng tỏ S chia hết cho 14