Tính: \(T = - 9 + \left( { - 2} \right) - \left( { - 3} \right) + \left( { - 8} \right)\)
Tính giá trị của biểu thức:
a) \(9 234:\left[3.3.\left(1+8^3\right)\right];\)
b) \(76-\left\{2.\left[2.5^2-\left(31-2.3\right)\right]\right\}+3.25.\)
a) 9 234 : [3 . 3. (1 + 83)] = 9 234 : [3 . 3 . (1 + 512)]
= 9 234 : [3 . 3 . 513] = 9 234 : 4617 = 2
b) 76 - {2 . [2 . 52 - (31 - 2 . 3)]} + 3 . 25
= 76 - {2 . [2 . 25 - (31 - 6)]} + 75
= 76 - {2 . [50 - 25]} + 75 = 76 - {2 . 25} + 75 = 76 - 50 + 75 = 101
a) 9 234 : [3 . 3. (1 + 83)] = 9 234 : [3 . 3 . (1 + 512)]
= 9 234 : [3 . 3 . 513] = 9 234 : 4617 = 2
b) 76 - {2 . [2 . 52 - (31 - 2 . 3)]} + 3 . 25
= 76 - {2 . [2 . 25 - (31 - 6)]} + 75
= 76 - {2 . [50 - 25]} + 75 = 76 - {2 . 25} + 75 = 76 - 50 + 75 = 10
Tìm x:
\(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x-9=5\right|\)
\(\left|x-2\right|+\left|x-3\right|+\left|2x-8\right|=9\\ \left|x+2\right|+\left|x+3\right|+\left|x+1\right|=4\\ \left|x+\dfrac{1}{1.5}\right|+\left|x+\dfrac{1}{5.9}\right|+\left|x+\dfrac{1}{9.13}\right|+...+\left|x+\dfrac{1}{397.401}\right|=101x\)
\(\left|x+\dfrac{1}{1.5}\right|+\left|x+\dfrac{1}{5.9}\right|+\left|x+\dfrac{1}{9.14}\right|+...+\left|x+\dfrac{1}{397.401}\right|\ge0\)
\(\Rightarrow101x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+\dfrac{1}{1.5}+x+\dfrac{1}{5.9}+...+x+\dfrac{1}{397.401}=101x\)
\(\Rightarrow101x+\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{397.401}\right)=x\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{397.401}\right)=x\)
\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+....+\dfrac{1}{397}-\dfrac{1}{401}\right)\)
\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{401}\right)\)
\(\Rightarrow x=\dfrac{1}{4}.\dfrac{400}{401}\)
\(\Rightarrow x=\dfrac{100}{401}\)
Tính nhanh giá trị của biểu thức:
\(A=\dfrac{\left(2^4+2^2+1\right)\left(4^4+4^2+1\right)\left(6^4+6^2+1\right)\left(8^4+8^2+1\right)\left(10^4+10^2+1\right)}{\left(3^4+3^2+1\right)\left(5^4+5^2+1\right)\left(7^4+7^2+1\right)\left(9^4+9^2+1\right)\left(11^4+11^2+1\right)}\)
bài 6: tính :
\(\dfrac{10^9.\left(-81\right)^{10}}{\left(-8\right)^4.25^5.9^{10}}\)
b,\(\dfrac{9^4.\left(-4\right)^5.25^3}{8^3,\left(-27\right)^2.5^7}\)
c,\(\dfrac{3^{186}.\left(-25\right)^{50}}{\left(-15\right)^{100}.27^{29}}\)
a: \(=\dfrac{2^9\cdot5^9\cdot3^{40}}{2^{12}\cdot5^{10}\cdot3^{20}}=\dfrac{3^{20}}{5\cdot2^3}\)
b: \(=\dfrac{-3^8\cdot2^{10}\cdot5^6}{2^9\cdot\left(-1\right)\cdot3^6\cdot5^7}=\dfrac{-2}{5}\cdot3^2=-\dfrac{18}{5}\)
c: \(=\dfrac{3^{186}\cdot5^{100}}{5^{100}\cdot3^{187}}=\dfrac{1}{3}\)
Tìm \(x\):
\(8\)) \(1-\left(x-6\right)=4\left(2-2x\right)\)
\(9\))\(\left(3x-2\right)\left(x+5\right)=0\)
\(10\))\(\left(x+3\right)\left(x^2+2\right)=0\)
\(11\))\(\left(5x-1\right)\left(x^2-9\right)=0\)
\(12\))\(x\left(x-3\right)+3\left(x-3\right)=0\)
\(13\))\(x\left(x-5\right)-4x+20=0\)
\(14\))\(x^2+4x-5=0\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của biểu thức:
\(T=\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+\left|x-5\right|+\left|x+6\right|+\left|x-7\right|+\left|x+8\right|+\left|x-9\right|\)
Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0
vì vậy min của T =0
\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)
\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)
\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)
\(\Rightarrow T\ge|43|\)
\(\Rightarrow T\ge43\)
Vậy \(Min_T=43\)
Aaaaa! Nãy tui bị ngu vậy mới đúng nè hay sao ý @@
\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9| \)
\(\Rightarrow\)\( T=|1-x|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x| \)
\(T\ge\)\( |1-x +x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x| \)
\(\Rightarrow T\ge|44-x|\)
Vậy GTNN của x = 44 khi x = 0
1. Tính
\(\left(8\dfrac{9}{4}+\dfrac{2}{7}\right)-\left(-6-\dfrac{3}{7}+\dfrac{5}{4}\right)-\left(3+\dfrac{2}{4}-\dfrac{9}{7}\right)\)
\(\left(8+\dfrac{9}{4}+\dfrac{2}{7}\right)-\left(-6-\dfrac{3}{7}+\dfrac{5}{4}\right)-\left(3+\dfrac{2}{4}-\dfrac{9}{7}\right)\)
\(=8+\dfrac{9}{4}+\dfrac{2}{7}+6+\dfrac{3}{7}-\dfrac{5}{4}-3-\dfrac{2}{4}+\dfrac{9}{7}\)
\(=11+\dfrac{1}{2}+2\)
\(=\dfrac{27}{2}\)
Tính giá trị các biểu thức sau (hợp lí nếu có thể):
a) \(\dfrac{8^5.\left(-5\right)^8+\left(-2\right)^5,10^9}{2^{16}.5^7+20^8}\)
b) \(\dfrac{\left(-0,25\right)^{-5}.9^4.\left(-2\right)^{-3}-2^{-2}.6^9}{2^9.3^6+6^6.40}\)
Tính giá trị các biểu thức.
a)\(\frac{{{4^3}{{.9}^7}}}{{{{27}^5}{{.8}^2}}};\)
b)\(\frac{{{{\left( { - 2} \right)}^3}.{{\left( { - 2} \right)}^7}}}{{{{3.4}^6}}};\)
c)\(\frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,09} \right)}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}};\)
d)\(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}}.\)
a)
\(\frac{{{4^3}{{.9}^7}}}{{{{27}^5}{{.8}^2}}} = \frac{{{{\left( {{2^2}} \right)}^3}.{{\left( {{3^2}} \right)}^7}}}{{{{\left( {{3^3}} \right)}^5}.{{\left( {{2^3}} \right)}^2}}} =\frac{2^{2.3}.3^{2.7}}{3^{3.5}.2^{2.3}}= \frac{{{2^6}{{.3}^{14}}}}{{{3^{15}}{{.2}^6}}} = \frac{1}{3}\)
b)
\(\frac{{{{\left( { - 2} \right)}^3}.{{\left( { - 2} \right)}^7}}}{{{{3.4}^6}}} =\frac{(-2)^{3+7}}{3.(2^2)^6}= \frac{{{{\left( { - 2} \right)}^{10}}}}{{3.{{\left( {{2^{2.6}}} \right)}}}} = \frac{{{2^{10}}}}{{{{3.2}^{12}}}} = \frac{1}{{{{3.2}^2}}} = \frac{1}{{12}}\)
c)
\(\begin{array}{l}\frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,09} \right)}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}} = \frac{{{{\left( {0,2} \right)}^5}.{{\left[ {{{\left( {0,3} \right)}^2}} \right]}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}} = \frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,3} \right)}^6}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}}\\ = \frac{{{{\left( {0,3} \right)}^2}}}{{{{\left( {0,2} \right)}^2}}} = \frac{{0,9}}{{0,4}} = \frac{9}{4}\end{array}\)
d)
Cách 1: \(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}} = \frac{{8 + 16 + 32}}{{49}} = \frac{{56}}{{49}} = \frac{8}{7}\)
Cách 2: \(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}} = \frac{{2^3.(1+2+2^2)}}{{7^2}} = \frac{{2^3.7}}{{7^2}} = \frac{8}{7}\)