Những câu hỏi liên quan
HD
Xem chi tiết
PB
25 tháng 8 2019 lúc 16:38

\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left(a^3-c^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left[\left(a^3-b^3\right)+\left(b^3-c^3\right)\right]+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)

\(=\left(b^3-c^3\right)\left(a-b\right)-\left(a^3-b^3\right)\left(b-c\right)\)

\(=\left(b-c\right)\left(b^2+bc+c^2\right)\left(a-b\right)-\left(a-b\right)\left(a^2+ab+b^2\right)\left(b-c\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[\left(b^2+bc+c^2\right)-\left(a^2+ab+b^2\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(bc+c^2-a^2-ab\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[b\left(c-a\right)+\left(c-a\right)\left(c+a\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

Bình luận (0)
TN
28 tháng 8 2019 lúc 9:21

a(b3−c3)+b(c3−a3)+c(a3−b3)

=a(b3−c3)−b(a3−c3)+c(a3−b3)

=a(b3−c3)−b[(a3−b3)+(b3−c3)]+c(a3−b3)

=a(b3−c3)−b(b3−c3)−b(a3−b3)+c(a3−b3)

=(b3−c3)(a−b)−(a3−b3)(b−c)

=(b−c)(b2+bc+c2)(a−b)−(a−b)(a2+ab+b2)(b−c)

=(a−b)(b−c)[(b2+bc+c2)−(a2+ab+b2)]

=(a−b)(b−c)(bc+c2−a2−ab)

=(a−b)(b−c)[b(c−a)+(c−a)(c+a)]

=(a−b)(b−c)(c−a)(a+b+c)

Bình luận (0)
HD
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
LC
29 tháng 9 2019 lúc 20:47

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+3a^2b+3ab^2+3c\left(a^2+2ab+b^2\right)+3ac^2+3bc^2-a^3-b^3\)

\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)

\(=3\left(a^2b+ab^2+a^2c+ac^2+2abc+b^2c+bc^2\right)\)

\(=3\left(a^2b+ab^2+a^2c+ac^2+abc+abc+b^2c+bc^2\right)\)

\(=3\left[ab\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)\right]\)

\(=3\left(a+b\right)\left(ab+c^2+ac+bc\right)\)

\(=3\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

Bình luận (0)
QD
Xem chi tiết
DH
8 tháng 10 2017 lúc 21:25

mở hằng đẳng thức nhé cậu :)

Bình luận (0)
NB
13 tháng 10 2017 lúc 10:01

(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)

Bình luận (0)
NB
13 tháng 10 2017 lúc 10:03

đây là hằng đẳng thức nha bạn :)

Bình luận (0)
VH
Xem chi tiết
PV
19 tháng 10 2018 lúc 20:35

a3 + b3 + c3 - 3abc

= (a3 + 3a2b + 3ab2 + b3 ) + c3 - 3abc - 3a2b - 3ab2

=[(a+b)3 + c3 ]- (3abc+3a2b+3ab2)

=(a+b+c)[(a+b)2 - (a+b)c + c2 ] - 3ab(c+a+b)

=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)

=(a+b+c)(a2+b2+c2-ab-bc-ca)

Bình luận (0)
PT
Xem chi tiết
KN
20 tháng 7 2015 lúc 21:07

ab(a-b)+bc(b-c)+ac(c-a) 
=ab(a-b)-bc[(a-b)+(c-a)] +ac(c-a) 
=ab(a-b) -bc(a-b) -bc(c-a) + ac(c-a) 
=b(a-c)(a-b) -c(a-c)(a-b) 
=(b-c)(a-c)(a-b) 

Bình luận (0)
BK
Xem chi tiết
PT
22 tháng 7 2017 lúc 10:14

ab(a+b)+bc(b+c)=a2b+ab2+b2c+bc2=(.................không phân tích đc nhé

Bình luận (0)
BK
22 tháng 7 2017 lúc 10:16

de tren kia sai ban a

Bình luận (0)
BK
22 tháng 7 2017 lúc 10:18

de dung day giup minh di ab(a+b)+bc(b+c)+ca(c+a)+3abc please

Bình luận (0)
BK
Xem chi tiết