Tìm số tự nhiên dạng N=abcd biết abcd chia hết cho 11,a=b+c và bc là số chính phương
1,Chứng minh: a,a2+a chia hết cho 2
b,a2+b2-(a+b) chia hết chia 2 với mọi a và b thuộc N
2,Biết 1978m+2012n và 78m+10m cùng chia hết cho 11
Chứng minh: m và n cùng chia hết cho 11.
3, Tìm số tự nhiên n, biết:
n+S(n)=94. với S(n) là tổng các chữ số của n.
4, Tìm số N= abcd , biết:
abcd chia hết cho 11 và a=b+c và bc là số chính phương
bài này mình làm được nhưng hơi dài lên mất khoảng 2 đến 3 phút bạn đợi mình được không ?
1, D=7+72+73+...........+72016.Tìm chữ số tận cùng của D.D có phải là số chính phương không?Vì sao?
2,Tìm số chính phương có dạng abcd biết bc chia hết cho 13
3,Cho E=11111.....11 (2n chữ số 1) - 777......7 (n chữ số 7).Tìm n để E là số chính phương
4,C=1111......1121(2016 chữ số 1 và 21).C có phải là số chính phương không
1, D=7+72+73+...........+72016.Tìm chữ số tận cùng của D.D có phải là số chính phương không?Vì sao?
2,Tìm số chính phương có dạng abcd biết bc chia hết cho 13
3,Cho E=11111.....11 (2n chữ số 1) - 777......7 (n chữ số 7).Tìm n để E là số chính phương
4,C=1111......1121(2016 chữ số 1 và 21).C có phải là số chính phương không
Tìm số tự nhiên có bốn chữ số \(\overline{abcd}\), biết rằng nó là một số chính phương, số \(\overline{abcd}\) chia hết cho \(9\) và \(d\) là một số nguyên tố.
\(\overline{abcd}⋮9\) (d là số nguyên tố)
\(\Rightarrow d\in\left\{3;5;7\right\}\)
mà \(\overline{abcd}\) là số chính phương
\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)
\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)
mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)
\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)
\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)
Số chính phương có bốn chữ số. Số chính phương có bốn chữ số có thể là 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.
- Nếu tổng các chữ số là 9, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 18, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 27, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 36, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 45, thì số abcd
chia hết cho 9.
Ví dụ: Giả sử ta tìm số tự nhiên có bốn chữ số abcd
, biết rằng nó là một số chính phương, số abcd
chia hết cho 9 và d là một số nguyên tố.
- Ta tìm số chính phương có bốn chữ số: 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.
- Ta kiểm tra số abcd
chia hết cho 9. Ví dụ, nếu ta chọn số 2025, tổng các chữ số là 2 + 0 + 2 + 5 = 9, nên số 2025 chia hết cho 9.
- Ta kiểm tra d có phải là số nguyên tố. Ví dụ, nếu ta chọn số 2025, d = 5 không chia hết cho bất kỳ số nguyên tố nào từ 2 đến căn bậc hai của 5, nên d = 5 là số nguyên tố.
- Kết hợp các kết quả từ các bước trên, ta có số tự nhiên thỏa mãn yêu cầu đề bài là 2025.
A = \(\overline{abcd}\)
+ vì A là một số chính phương nên \(d\) = 0; 1; 4; 5;6; 9
+ Vì \(d\) là số nguyên tố nên \(d\) = 5
+ Vì A là số chính phương mà số chính phương có tận cùng bằng 5 thì chữ số hàng chục là: 2 ⇒ c =2
+ Vì A ⋮ 9 ⇒ a + b + c + d \(⋮\) 9
⇔ a + b + 2 + 5 ⋮ 9 ⇒ a + b = 2; 11
a + b = 2⇒ (a; b) =(1; 1); (2; 0) ⇒ \(\overline{abcd}\) = 1125; 2025
a + b = 11 ⇒(a;b) =(2;9); (3;8); (4; 7); (5; 6); (6;5); (7;4); (8; 3); (9;2)
⇒ \(\overline{abcd}\) = 2925; 3825; 4725; 5625; 6525; 7425; 8325; 9225
Vì 2025 = 452; 5625 = 752 vậy số thỏa mãn đề bài là: 2025 và 5625
a)Tìm số ab biết rằng số M=ab + ba là số chính phương
b)Tìm số chính phương có 4 chữ số abcd thỏa mãn điều kiện abcd chia hết cho 11 và a=b+c, bc là số chính phương
Tìm số tự nhiên có 7 chữ số khác nhau có dạng n= Covid19, biết n chia hết cho 7 và Covid là số chính phương chia hết cho 5.
1)tìm số tự nhiên : 1ab9 là số chính phương
2)tìm số tự nhiên : 19ab3cd là số chính phương
3)tìm số n thuộc n nhỏ nhất : 2^8 +2^11 +2^n là số chính phương
4)tìm a,b biết 69396a3b chia hết cho 2007
5)tính A= 2/15 + 2/35 + 2/63 + 2/99 +..........+2/4024035
6/ cho a = 1+2+3+4+......+12345678 , tìm dư và thương của a cho 2016
bạn ra 1 lần nhiều thế này người ta ngại trả lời lắm
bài 1: hãy tìm các chữ số a, b, c, d biết a, cd, ad, abcd đều là số chính phương (a là 1 số tự nhiên, cd là 1 số tự nhiên, ad là 1 số tự nhiên, abcd cũng là 1 số tự nhiên)
bài 2: chứng minh
B=1+3+5+7+...+n( n là 1 số tự nhiên) chính phương.
ta co
a thuoc{1;4;9}
=>ad thuoc{16;49}
cd thuoc{36}
Vậy abcd là số 1936
2.
ta co
1+3+5+7+...+n co tan cung la 6
=> 1+3+5+7+...+n la mot so chinh phuong (ĐPCM)
bài 1: hãy tìm các chữ số a,b, c,d biết a ( a là 1 số tự nhiên), cd ( cd là 1 số tự nhiên), ad ( ad là 1 số tự nhiên), abcd ( abcd là 1 số tự nhiên).
bài 2: chứng minh:
B=1+3+5+7+...+n chính phương (n là 1 số tự nhiên bất kì)
bài 1: vô số (ko biết có đúng ko)
bài 2 : + số lượng số hạng = (n - 1)/2 + 1 = (n + 1)/2
+ B = [(n + 1)(n + 1)/2] / 2 = (n + 1)^2 là 1 số chính phương (n là 1 số tự nhiên)