Tìm tập xác định của các hàm số:
\(y=2x^2+3x-\frac{1}{2}\)
Tìm tập xác định của các hàm số y = 2 - 3 x - 1 1 - 2 x
Tìm tập xác định của hàm số: y=\(\frac{\sqrt{3-2x}+x\sqrt{3x+11}}{\sqrt{1-x^2}+\sqrt{\left|3x^2-2x-5\right|}}\)
Tìm tập xác định của hàm số a) y = x ^ 4 + 3x ^ 2 + x - 1 . c) y = (2x - 1)/((2x + 1)(x - 3)) b) y = (3x - 1)/(- 2x + 2)
Tìm tập xác định của các hàm số sau:
a) \(y=2x^3+3x+1\);
b) \(y=\dfrac{x-1}{x^2-3x+2}\) ;
c) \(y=\sqrt{x+1}+\sqrt{1-x}\).
a) Hàm \(y = 2{x^3} + 3x + 1\) là hàm đa thức nên có tập xác định \(D = \mathbb{R}\)
b) Biểu thức \(\frac{{x - 1}}{{{x^2} - 3x + 2}}\)có nghĩa khi \({x^2} - 3x + 2 \ne 0 \Leftrightarrow x \ne 1\)và \(x \ne 2\)
Vậy tập xác định của hàm số đã cho là \(D = \mathbb{R}/\left\{ {1;2} \right\}\)
c) Biểu thức \(\sqrt {x + 1} + \sqrt {1 - x} \) có nghĩa khi \(x + 1 \ge 0\) và \(1 - x \ge 0\), tức là \( - 1 \le x \le 1\)
Vậy tập xác định của hàm số đã cho là \(D = \left[ { - 1;1} \right]\)
Tìm tập xác định của các hàm số sau:
a) y = -2x + 3
b) y = 2x2 - 3x + 1
c) y = \(\dfrac{x}{x^2-1}\)
d) y = \(\sqrt{1-x}\)
c: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
d: ĐKXĐ: \(x\le1\)
a: ĐKXĐ: \(x\in R\)
b: ĐKXĐ: \(x\in\varnothing\)
tìm tập xác định của các hàm số :
a , \(y=\frac{\sqrt{3-x}+\sqrt{3+x}}{\left|x\right|-2}\)
b , \(y=\frac{\left|2x+1\right|-\sqrt{2}}{2x^2-3x+1}\)
Tìm tập xác định của hàm số sau a) y = \(\frac{3x-2}{x^2-3x+2}\)
b) y = \(\frac{x+2017}{3-2x}+\sqrt{2x-1}\)
Tìm tập xác định của các hàm số sau:
a) \(f(x) = \sqrt {2x + 7} \)
b) \(f(x) = \frac{{x + 4}}{{{x^2} - 3x + 2}}\)
a) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(2x + 7 \ge 0,\)tức là khi \(x \ge \frac{{ - 7}}{2}.\)
Vậy tập xác định của hàm số này là \(D = \left[ { - \frac{7}{2}; + \infty )} \right.\)
b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \({x^2} - 3x + 2 \ne 0,\)tức là khi \(x \ne 2,x \ne 1.\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}\backslash \left\{ {1;2} \right\}\)
a. Tìm tập xác định của hàm số y = \(\frac{x+1}{2x+7}\)
b. Lập bảng biến thiên và vẽ đồ thị hàm số y = x2 + 3x + 2.