N=(x^2+9x+1)^2+9(1-6x+9x^2)-6(3x-1)(x^2+9x+1)
Rút gọn N
Đúng đầy đủ 2 ticks :3
rút gọn rồi tính giá trị biểu thức
a,\(\dfrac{9x^2-6x+1}{9x^2+1}\) tại x =-3
b, \(\dfrac{x^2-6x+9}{-9x+3x^2}\) tại x=-\(\dfrac{1}{3}\)
c, \(\dfrac{x^2-4x+4}{2x^2-4x}\) tại x=-\(\dfrac{1}{2}\)
a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)
\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{3x-1}{3x+1}\)
\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)
b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)
\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)
\(=\dfrac{x-3}{3x}\)
\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)
c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)
\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)
\(=\dfrac{x-2}{2x}\)
\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)
Rút gọn
a) (6x-2)2+(2+5x)2+4x(3x-12)x(2-5x)
b) (9x3+3x+1)x(9x3-3x+1)-(9x3+12)
rút gọn biểu thức:
P = \(\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(ĐKXĐ:x\ne\pm3\)
\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)
Rút gọn M và A sau đây :
M= \(\left(\dfrac{x}{x+3}+\dfrac{3-x}{x+3}.\dfrac{x^2+3x+9}{x^2-9}\right)\)
A= \(\left(\dfrac{3x}{1-3x}-\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
BÀI 1 RÚT GỌN CÁC BIỂU THỨC SAU
a)(3x-2)(9x²+6x+4)-3(9x³-2)
b)(x²+4)(x+2)(x-2)-(x²+3)(x²-3)
c)(x+1)³-(x-1)(x²+x+1)-3x(x+1)
BÀI 2 CMR
a)-4x²-4x-2<0 với mọi x
Em ơi mình đăng bài sang bên môn toán nha
BÀI 1 RÚT GỌN CÁC BIỂU THỨC SAU
a)(3x-2)(9x²+6x+4)-3(9x³-2)
b)(x²+4)(x+2)(x-2)-(x²+3)(x²-3)
c)(x+1)³-(x-1)(x²+x+1)-3x(x+1)
BÀI 2 CMR
a)-4x²-4x-2<0 với mọi x
Bài 3. Rút gọn các đa thức sau
a/ (2x-3)(4x^2+6x+9)- (2x+1)(4x^2 - 2x +1)
b/ (x+ 2)(x^2- 2x+4) – (x^3- 2)
c/ (3x+ 5)(9x^2 - 15x +25)- 3x(3x-1)(3x+1)
d/ x^6 - (x^2 + x +1)(x^2 - 1)(x^2 - x+ 1)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
cho biểu thức
P=(\(\dfrac{\text{x^3+3x}}{\text{x^3+3x^2+9x+27}}\)+\(\dfrac{\text{3}}{\text{x^2+9}}\)):(\(\dfrac{\text{1}}{\text{x-3}}\)-\(\dfrac{\text{6x}}{\text{x^3-3x^2+9x-27}}\))
rút gọn p
với x>0 thì P không nhận gt nào
Tìm cácgt của x để P nguyên
ĐKXĐ: \(x\ne\pm3\)
\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
Ý 2 mình k hiểu ý bạn lắm
\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)
\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)
Rút gọn
a) \(\left(\frac{4}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
b) \(\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
c) \(\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10x}{1-6x+9x^2}\)