Bài 1: Chứng tỏ rằng 10^2002 + 8 chia hết cho 3 và 9
Bài 1: Chứng tỏ rằng 10^2022 + 8 chia hết cho 3 và 9
Xét biểu thức \(P=10^0+10^1+10^2+...+10^{2021}\)
\(\Rightarrow10P=10^1+10^2+10^3+...+10^{2022}\)
\(\Rightarrow9P=10^{2022}-1\)
\(\Rightarrow10^{2022}+8=9P+9⋮9\)
Vậy ta có đpcm.
Cách 2: Ta thấy \(10=9+1\) nên
\(10^{2022}=\left(9+1\right)^{2022}\) \(=\left(9+1\right)\left(9+1\right)...\left(9+1\right)\) (2022 lần)
\(=9Q+1\) (Q là 1 biểu thức).
Vậy \(10^{2022}-1=9Q⋮9\), cũng suy ra đpcm.
Đặt A = 10²⁰⁰² + 8
= 1000...000 + 8 (2002 chữ số 0)
Tổng các chữ số của A:
1 + 0 + 0 + ... + 0 + 8 (2002 chữ số 0)
= 9
Ta có:
9 ⋮ 9
9 ⋮ 3
Vậy A ⋮ 9 và A ⋮ 3
Bài 1Dùng 3 trong 4 số 5;4;3;2,hãy viết tất cả các số tự nhiên có 3 chữ số chia hết cho cả 3 số 2;3 và 9.
Bài 2 chứng tỏ rằng :
a) 1033+8 chia hết cho 18
b) 1010+14 chia hết cho 6
Bài 3 Chứng tỏ rằng với mọi số tự nhiên n,tích (n+7).(n+8) luôn chia hết cho 2
Bài 4 Cho n thuộc N*. Chứng tỏ rằng
a) (5n -1) chia hết cho 4
b) (10n + 18n - 1) chia hết cho 27
a)Các số tự nhiên chia hết cho 9 là :450;405;540;504
b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534
Chứng tỏ rằng:
a) ( 10^n +8 ) chia hết cho 9
b) (3^4n+1 + 2^4n+1) chia hết cho 5
c) (10^n + 5^3) chia hết cho 3 và 9
Ảnh đẹp thì
chứng minh rằng
a. 10^2002 + 8 chia hết cho cả 9 và 2
b. 10^2004 + 14 chia hết cho cả 3 và 2
a ) 10^2002+8=1000...008(có 2001 chữ số 0)
=>chia hết cho 2(tận cìng là 8)
tổng các chữ số 1+0+8=9 chia hết cho 9
=>số chia hết cho 9
b ) 10^2004+14=100...0014(có 2002 chữ số 0)
=>chia hết cho 2(tận cùng là 4)
tổng các chữ số 1+0+1+4=6 chia hết 3
=>số chia hết cho 3
1/
10^2002+8=1000...008(có 2001 chữ số 0)
=>chia hết cho 2(tận cìng là 8)
tổng các chữ số 1+0+8=9 chia hết cho 9
=>số chia hết cho 9
2/
10^2004+14=100...0014(có 2002 chữ số 0)
=>chia hết cho 2(tận cùng là 4)
tổng các chữ số 1+0+1+4=6 chia hết 3
=>số chia hết cho 3
tich nha
Bài 1 : Chứng tỏ rằng :
a) 10 mũ 9 + 10 mũ 8 + 10 mũ 7 chia hết cho 555
b) 81 mũ 7 - 27 mũ 9 - 9 mũ 19 chia hết cho 45
Bài 2 : Chứng tỏ rằng :
A = 5 + 5 mũ 5 + 5 mũ 3 + ... +5 mũ 99 + 5 mũ 100 chia hết cho 6
Mấy bạn giúp mk với gấp lắm !
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
Bài 2:
A = 5 + 52 + 53 + ... + 599 + 5100 chứ em?
a) chứng tỏ rằng (101234+2)chia hết cho 3
b)chứng tỏ rằng (10789 +8) chia hết cho 9
a)101234+2)=10+2=12
Vì 12 chia hết cho 3 nên (101234+2)chia hết cho 3
b)(10789+8)=10+8=18
Vì 18 chia hết 9 nên (10799+8) chia hết cho 9
Chứng tỏ rằng
a. (10^7+5) chia hết cho 3 và chia hết cho 5
b. (10^m+8) chia hết cho 2 và chia hết cho 9
a ) Ta có :
107 có 7 số 0 và 1 số 1
Nên khi cộng thêm 5 ta có tổng các chữ số là :
1 + 5 = 6\(⋮\)3
Vì : 107 + 5 có số cuối là 5 nên\(⋮\)5
=> 107 + 5\(⋮\)3 và 5
b ) Ta có :
10m + 8 chẵn
=> 10m + 8\(⋮\)2
Ta có :
10m + 8 có tổng\(⋮\)9
=> 10m + 8\(⋮\)2 và 9
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Chứng tỏ rằng:
a) Số 10^10+8 chia hết cho 2,3 và 9
b) Số 10^100+5 chia hết cho 3 và 5
c) Số 10^50+44 chia hết cho 2 và 9
bạn nghe cô giáo giảng là dc mà :D
nha bạn :):)))