Tìm x:
38x+4=81x+3
Tìm x
a) (x2+4)2 - 4x(x2+4) = 0
b) x5 - 18x3 + 81x = 0
a) \(\left(x^2+4\right)^2-4x\left(x^2+4\right)=0\)
\(=\left(x^2+4\right)\left(x^2+4-4x\right)=0\)
\(=\left(x^2+4\right)\left(x+2\right)^2=0\)
Mà \(x^2\ge0\Rightarrow x^2+4>0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
b) \(x^5-18x^3+81x=0\)
\(=\left(x^5-9x^3\right)-\left(9x^3-81x\right)=0\)
\(=x^3\left(x^2-9\right)-9x\left(x^2-9\right)=0\)
\(=\left(x^3-9x\right)\left(x^2-9\right)=0\)
\(=x\left(x^2-9\right)\left(x^2-9\right)=0\)
\(=x\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x\in\left\{-3;3\right\}\end{cases}}\)
Tìm x,y sao cho:
a,81x = 325 - 144y
b,5^x + 99=10^y
c,2^x+1 x 3^y = 12^y
d,1y96 = (3x + 12)^2
38.x + 4 = 81x+3 .tìm x
\(3^{8x+4}=81^{x+3}\)
\(3^{8x+4}=\left(3^4\right)^{x+3}\)
\(3^{8x+4}=3^{4x+12}\)
\(\Rightarrow8x+4=4x+12\)
\(\Rightarrow8x-4x=12-4\)
\(\Rightarrow4x=8\Rightarrow x=2\)
38.x + 4 = 81x + 3
38.x + 4 = (34)x + 3
38.x + 4 = 34.x + 12
8.x + 4 = 4.x + 12
8.x - 4.x = 12 - 4
4.x = 8
x = 8 : 4
x = 2
tìm x: b) 35.x+4= 81x+3
3⁵ˣ⁺⁴ = 81ˣ⁺³
3⁵ˣ⁺⁴ = (3⁴)ˣ⁺³
3⁵ˣ⁺⁴ = 3⁴ˣ⁺¹²
5x + 4 = 4x +12
5x - 4x =12 - 4
x = 8
Giải các phương trình sau :
a) 6x^4+5x^3-38x^2+5x+6=0
b)(x-3)^4+(x-5)^4=16
\(\sqrt{81x-8}=x^3-2x^2+\frac{4}{3}x-2 \)
d) -x^3+8x^2-12x+8 ; e) 27x^3+81x^2+81x+27
d,Sửa đề
\(-x^3+6x^2-12x+8\)
\(=-\left(x^3-6x^2+12x-8\right)\)
\(=-\left(x^3-3.x^2.2+3.x.2^2-2^3\right)\)
\(=-\left(x-2\right)^3\)
\(e,27x^3+81x^2+81x+27\)
\(=27\left(x^3+3x^2+3x+1\right)\)
\(=27\left(x+1\right)^3\)
Giải pt : \(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)
Lời giải:
PT $\Leftrightarrow 27\sqrt[3]{81x-8}=27x^3-54x^2+36x-54$
$\Leftrightarrow 27\sqrt[3]{81x-8}=(3x-2)^3-46$
Đặt $\sqrt[3]{81x-8}=a; 3x-2=b$. Khi đó:
\(\left\{\begin{matrix} a^3-27b=46\\ 27a=b^3-46\end{matrix}\right.\) $\Rightarrow 27a=b^3-(a^3-27b)$
$\Leftrightarrow a^3-b^3+27a-27b=0$
$\Leftrightarrow (a-b)(a^2+ab+b^2+27)=0$
Dễ thấy $a^2+ab+b^2+27>0$ với mọi $a,b\in\mathbb{R}$
Do đó $a-b=0\Rightarrow a=b$
$\Leftrightarrow 81x-8=(3x-2)^3$
$\Leftrightarrow 27x^3-54x^2-45x=0$
$\Rightarrow x=0; x=\frac{3\pm 2\sqrt{6}}{3}$
Vậy.......
\(\sqrt[3]{{81x - 8}} = {x^3} - 2{x^2} + \dfrac{4}{3}x - 2\left( 1 \right)\)
\(\left( 1 \right) \Leftrightarrow 27{x^3} - 54{x^2} + 36x - 54 = 27\sqrt[3]{{81x - 8}} \)
Đặt \(y=\sqrt[3]{81x-8}\Leftrightarrow y^3=81x-8\)
Vậy ta có hệ phương trình \(\left\{{}\begin{matrix}27x^3-54x^2+36x-54=27y\\81x-8=y^3\end{matrix}\right.\Rightarrow\left(3x-2\right)^3+27\left(3x-2\right)=y^3+y\left(2\right)\)
Xét hàm số \(f(t)=t^3+t(t \in \mathbb{R})\)
Đạo hàm \(f'\left(t\right)=3t^2+1>0;\forall t\in\) \(\mathbb{R}\)
Vậy hàm số trên đồng biến trên \(\mathbb{R}\)
\(\left(2\right)\Leftrightarrow f\left(3x-2\right)=f\left(y\right)\\ \Leftrightarrow3x-2=y\\ \Leftrightarrow3x-2=\sqrt[3]{81x-8}\\ \Leftrightarrow27x^3-54x^2-45x=0\)
\(\Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{{3 \pm 2\sqrt 6 }}{3} \end{array} \right.\)
Vậy phương trình có tập nghiệm: \(T = \left\{ {0;\dfrac{{3 \pm 2\sqrt 6 }}{3}} \right\}\)
Cách khác:
Phương trình đã cho tương đương với \(3.\sqrt[3]{{3\left( {x - \dfrac{2}{3}} \right) + \dfrac{{46}}{{27}}}} = {\left( {x - \dfrac{2}{3}} \right)^2} - \dfrac{{46}}{{27}}\)
Đặt \(\left\{ \begin{array}{l} u = x - \dfrac{2}{3}\\ v = \sqrt[3]{{3\left( {x - \dfrac{2}{3}} \right) + \dfrac{{46}}{{27}}}} = \sqrt[3]{{3u + \dfrac{{46}}{{27}}}} \end{array} \right.\) ta có hệ: \(\left\{ \begin{array}{l} 3u = {v^3} - \dfrac{{46}}{{27}}\\ 3v = {u^3} - \dfrac{{46}}{{27}} \end{array} \right. \)
Trừ hai phương trình cho nhau theo từng vế ta có:
\(3\left( {u - v} \right) = \left( {v - u} \right)\left( {{v^2} + uv + {u^2}} \right) \Leftrightarrow \left[ \begin{array}{l} u - v = 0{\rm{ }}\left( 1 \right)\\ {v^2} + uv + {u^2} = - 3{\rm{ }}\left( 2 \right) \end{array} \right. \)
Dễ thấy \(v^2+uv+u^2\ge0\) nên \((2)\) vô nghiệm.
\(\left( 1 \right) \Leftrightarrow u = v \Rightarrow \sqrt[3]{{3x - \dfrac{8}{{27}}}} = x - \dfrac{2}{3} \Leftrightarrow {x^3} - 2{x^2} - \dfrac{5}{3} = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{{3 \pm 2\sqrt 6 }}{3} \end{array} \right.\)
Vậy \(T = \left\{ {0;\dfrac{{3 \pm 2\sqrt 6 }}{3}} \right\}\)
1/ Giải hpt = p đặt ẩn phụ : a,\(\left\{{}\begin{matrix}\left(x+y\right)^3+y=5\\3\left(x+y\right)^3-22xy+21=11x^2+12y^3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}81x^3y^2-81x^2y^2+33xy^2-29y^2=4\\25y^3+9x^2y^3-6xy^3-4y^2=24\end{matrix}\right.\)