chứng minh rằng x2-5x+7>0 với mọi x
Bài 6. Chứng minh rằng:
a) x2 + 3x + 7 > 0 , với mọi x
b) 5x - x2 - 8 < 0 , với mọi x
\(a,=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{19}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\\ b,=-\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{7}{4}=-\left(x-\dfrac{5}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}< 0\)
a,=(x2+3x+94)+194=(x+32)2+194≥194>0b,=−(x2−5x+254)−74=−(x−52)2−74≤−74<0
Chứng minh rằng:
E=4x2+5x+5>0 với mọi x
F=5x2-6x+7>0 với mọi x
G=-x2+5x -6<0 với mọi x
E=4x2+5x+5>0 với mọi x
=(4x2 +4x+1)+4
=(2x+1)\(^2\)+4
Với mọi x thuộc R thì (2x+1)\(^2\)>=0
Suy ra(2x+1)\(^2\)+4>=4>0
Hay E>0 với mọi x thuộc R(đpcm)
F=5x2-6x+7>0 với mọi x
=(5x\(^2\)-6x+\(\dfrac{36}{25}\))+\(\dfrac{139}{25}\)
=5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)
Với mọi x thuộc R thì 5\(\left(x-\dfrac{6}{5}\right)^2\)>=0
Suy ra 5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)>0
Hay F >0 với mọi x(đpcm)
G=-x2+5x -6<0 với mọi x
=-(x2-5x+6,25)+0,25
=-(x-2,5)2 +0,25
Với mọi x thuộc R thì -(x-2,5)2 <=0
Suy ra -(x-2,5)2 +0,25<0
Hay G<0 với mọi x (đpcm)
chúc bạn học tốt ạ
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
Áp dụng hàng đẳng thức 1, 2 theo hai chiều xuôi, ngược, làm các bài sau:
1. Tính nhanh: 532 - 53 × 6 + 32
2. Chứng minh -x2 + x - 33 < 0 với mọi x
3. Chứng minh x2 + 4x + 33 > 0 với mọi x
4. Tính giá trị nhỏ nhất của: B = x2 + 8x
5. Tìm x: (5x + 1)2 - (5x + 3)(5x - 3) = 30
2. -x2 + x - 33 = -x2 + x - 1/4 - 131/4 = -( x2 - x + 1/4 ) - 131/4 = -( x - 1/2 )2 - 131/4
-( x - 1/2 )2 ≤ 0 ∀ x => -( x - 1/2 )2 - 131/4 ≤ -131/4 < 0 ∀ x ( đpcm )
3. x2 + 4x + 33 = x2 + 4x + 4 + 29 = ( x + 2 )2 + 29
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 29 ≥ 29 > 0 ∀ x ( đpcm )
4. x2 + 8x = x2 + 8x + 16 - 16 = ( x + 4 )2 - 16
( x + 4 )2 ≥ 0 ∀ x => ( x + 4 )2 - 16 ≥ -16 ∀ x
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
Vậy GTNN của biểu thức = -16, đạt được khi x = -4
Chứng minh rằng x2 – x + 1 > 0 với mọi số thực x
Ta có:
\(x^2-x+1\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\) và \(\dfrac{3}{4}>0\)
Nên: \(x^2-x+1>0\)
\(x^2-x+1\)
\(=x^2-\dfrac{1}{2}.x-\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=x\left(x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x ( đpcm )
\(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Mà:\left(x-\dfrac{1}{2}\right)^2>0\forall x\in R\\ Vậy:\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\\ Vậy:x^2-x+1>0\forall x\in R\)
Chứng minh rằng: x 2 - x + 3 4 > 0 với mọi giá trị của x
Chứng minh rằng
-x2 + 8x - 19 < 0 với mọi giá trị x
\(-x^2+8x-19=-\left(x^2-8x+16\right)-3=-\left(x-4\right)^2-3\le-3< 0\)
6. Chứng minh rằng:
a. x2 + xy + y2 + 1 > 0 với mọi x, y
b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z
(ai lm giúp với ạ iem cảm ơn nhìu
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
b.
$x^2+4y^2+z^2-2x-6z+8y+15=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1$
$=(x-1)^2+(2y+2)^2+(z-3)^2+1\geq 0+0+0+1>0$ với mọi $x,y,z$
Ta có đpcm.
Chứng minh x^2 - 5x + 7 > 0 với mọi x
x2-2.\(\frac{5}{2}\)x + \(\frac{25}{4}\)-\(\frac{25}{4}\)+7= (x-\(\frac{5}{2}\))2 +\(\frac{3}{4}\)\(\ge\)\(\frac{3}{4}\)>0 với mọi x