Phân tích đa thức thành nhân tử
a(a+2b)^3-b(2a+b)^3
Bài 1: Phân tích đa thức thành nhân tử
a) (6x+3)-(2x-5)(2x+1)
b) (3x-2)(4x-3)-(2-3x)(x-1)-2(3x-2)(x+1)
Bài 2*:Phân tích đa thức thành nhân tử
a) (a-b)(a+2b)-(b-a)(2a-b)-(a-b)(a+3b)
b) 5xy3-2xy2-15y2+6z
c) (x+y)(2x-y)+(2x-y)(3x-y)-(y-2x)
d) ab3c2-a2b2c2+ab2c3-a2bc
e) x2(y-z)+y2(z-x)+z2(x-y)
f) x2-6xy+9y2+4x-12y
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Bài 1:Phân tích đa thức thành nhân tử
a)x4+2x2y+y2
b)(2a+b)2-(2b+a)2
c) 8a2-27b2-2a(4a2-9b2)
`a)x^4+2x^2y+y^2`
`=(x^2+y)^2`
`b)(2a+b)^2-(2b+a)^2`
`=(2a+b-2b-a)(2a+b+2b+a)`
`=(a-b)(3a+3b)`
`=3(a-b)(a+b)`
`c)8a^3-27b^3-2a(4a^2-9b^2)`
`=(2a-3b)(4a^2+6ab+9b^2)-2a(2a-3b)(2a+3b)`
`=(2a-3b)(4a^2+6ab+9b^2-3a^2-6ab)`
`=9b^2(2a-3b)`
a) Ta có: \(x^4+2x^2y+y^2\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot y+y^2\)
\(=\left(x^2+y\right)^2\)
b) Ta có: \(\left(2a+b\right)^2-\left(2b+a\right)^2\)
\(=\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\)
\(=\left(a-b\right)\left(3a+3b\right)\)
\(=3\left(a+b\right)\left(a-b\right)\)
Phân tích đa thức thành nhân tử
a) \(15a^2b^3+5a^3b^2\)
b) \(x^2-2x+x-y^2\)
\(a,15a^2b^3+5a^3b^2=5a^2b^2\left(3b+a\right)\\ b,x^2-2x+1-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
a) 15a2b3+5a3b2=5a2b2(3b+a)
b) x2-2x+x-y2=( x2-y2)-(2x+x)
=(x-y)(x+y)-x(2-1)
=(x-y)(x+y)-x3
Phân tích đa thức thành nhân tử:
a(a+2b)^3-b(2a+b)^3
Bài 3: Phân tích đa thức thành nhân tử: a* (a+2b)^3 - b* (2a+b)^3
Gọi a+b =x có:
a(x+b)3−b(x+a)3
=a(x3+3x2b+3xb2+b3)−b(x3+3x2a+3xa2+a3)
=ax3+3ax2b+3axb2+ab3−bx3−3bx2a−3bxa2−ba3
=(a−b)x3+(3ax2b−3bx2a)+(3axb2−3bxa2)+ab3−ba3
=(a−b)x3+3axb(b−a)+ab(b2−a2)
=−x3(b−a)+3axb(b−a)+ab(b+a)(b−a)
=−x3(b−a)+3axb(b−a)+(a2b+ab2)(b−a)
=(b−a)(−x3+3axb+a2b+ab2)
nho lik e
Bài 5: Phân tích đa thức sau thành nhân tử
a) x (a - b) + 2a - 2b
b) ax + by + 5x + 5y
\(a,x\left(a-b\right)+2a-2b=x\left(a-b\right)+2\left(a-b\right)=\left(a-b\right)\left(x+2\right)\\ b,Sửa:ax+ay+5x+5y=a\left(x+y\right)+5\left(x+y\right)=\left(a+5\right)\left(x+y\right)\)
\(a,=\left(x+2\right)\left(a-b\right)\\ b,Sửa:ax+ay+5x+5y\\ =a\left(x+y\right)+5\left(x+y\right)\\ =\left(a+5\right)\left(x+y\right)\)
a) \(x\left(a-b\right)+2a-2b\)
\(=x\left(a-b\right)+\left(2a-2b\right)\)
\(=x\left(a-b\right)+2\left(a-b\right)\)
\(=\left(a-b\right)\left(x+2\right)\)
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
Bài 3 : Tìm y để giá trị của biểu thức 1 + 4y - y2 là lớn nhất
Bài 4 : Tìm x , biết : ( x3 - x2 ) - 4x2 + 8x - 4 = 0
Bài 5 : Phân tích đa thức sau thành nhân tử
A = ( a + b + c )3 - ( a + b - c )3 - ( b + c - a )3 - ( c + a - b )3
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Phân tích đa thức thành nhân tử:a(a+2b)3 - b(2a+b)3
Phân tích đa thức thành nhân tử :
a(a+2b)3 -b(2a+b)3
a(a+2b)3 -b(2a+b)3
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4-2a^3b+2ab^3-b^4\)
\(=\left[\left(a^2\right)^2+ \left(b^2\right)^2\right]-2ab\left(a^2-b^2\right)\)
\(=\left(a^2+b^2\right)\left(a^2-b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-b\right)^2\)
\(=\left(a-b\right)^3\left(a+b\right)\)