Những câu hỏi liên quan
TD
Xem chi tiết
LK
Xem chi tiết
BA
Xem chi tiết
LL
1 tháng 4 2018 lúc 20:14

ai  mà biết hả

Bình luận (0)
BA
1 tháng 4 2018 lúc 20:24

Bạn vô duyên quá đấy!

Bình luận (0)
NH
2 tháng 4 2018 lúc 20:04

Ta có:

31(xyzt+xy-xt-zt-1)=40(yzt-y-t)

\(\Rightarrow\frac{xyzt-xy+xt+zt+1}{yzt+y+t}\)\(=\frac{40}{31}\)

\(\Rightarrow\frac{x\left(yzt+y+t\right)+zt+1}{yzt+y+t}\)\(=\frac{40}{31}\)

\(\Rightarrow\frac{zt+1}{yzt+y+t}=\frac{40}{31}\)

còn dài lắm bạn mở câu hỏi tương tự nha

Bình luận (0)
LL
Xem chi tiết
LS
Xem chi tiết
NU
Xem chi tiết
LM
Xem chi tiết
LH
28 tháng 8 2016 lúc 14:30

Ta có :

\(31\left(xyzt+xy+xt+zt+1\right)=40\left(yzt+y+t\right)\)

\(\Rightarrow\frac{xyzt+xy+xt+zt+1}{yzt+y+t}=\frac{40}{31}\)

\(\Rightarrow\frac{x\left(yzt+y+t\right)+zt+1}{yzt+y+t}=\frac{40}{31}\)

\(\Rightarrow x+\frac{zt+1}{yzt+y+t}=\frac{40}{31}\)

\(\Rightarrow x+\frac{1}{\left(\frac{yzt+y+t}{zt+1}\right)}=\frac{40}{31}\)

\(\Rightarrow x+\frac{1}{\left(y+\frac{t}{zt+1}\right)}=\frac{40}{31}\)

\(\Rightarrow x+\frac{1}{y+\frac{1}{\left(\frac{zt+1}{t}\right)}}=\frac{40}{31}\)

\(\Rightarrow x+\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{40}{31}\)

\(\frac{40}{31}< \frac{62}{31}=2\Rightarrow x< 2\)

Với x = 0; có :

\(\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{40}{31}\)

\(\Rightarrow y+\frac{1}{z+\frac{1}{t}}=\frac{31}{40}\)

Mà \(\frac{31}{40}< 1\Rightarrow y< 1\Rightarrow y=0\)

\(\Rightarrow\frac{1}{z+\frac{1}{t}}=\frac{31}{40}\)

\(\Rightarrow z+\frac{1}{t}=\frac{40}{31}\)

\(\cdot z=0\Rightarrow t=\frac{31}{40}\notin Z\)(Loại )

\(\cdot z=1\Rightarrow t=\frac{31}{9}\notin Z\)(Loại )

Với \(x=1;\)ta có :

\(\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{40}{31}-1\)

\(\Rightarrow\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{9}{31}\)

\(\Rightarrow y+\frac{1}{z+\frac{1}{t}}=\frac{31}{9}\)

\(\frac{31}{9}< \frac{36}{9}=4\Rightarrow y< 4\)

\(\cdot y=0\Rightarrow z+\frac{1}{t}=\frac{9}{31}\Rightarrow z=0\Rightarrow t=\frac{31}{9}\notin Z\)(Loại)

\(\cdot y=1\Rightarrow z+\frac{1}{t}=\frac{9}{22}\Rightarrow z=0\Rightarrow t=\frac{22}{9}\notin Z\)(Loại)

\(\cdot y=2\Rightarrow z+\frac{1}{t}=\frac{9}{13}\Rightarrow z=0\Rightarrow t=\frac{13}{9}\notin Z\)(Loại )

\(\cdot y=3\Rightarrow z+\frac{1}{t}=\frac{9}{4}\)

\(\frac{9}{4}< 3\Rightarrow z< 3\)

\(z=0\Rightarrow t=\frac{4}{9}\notin Z\)\(z=1\Rightarrow t=\frac{4}{5}\notin Z\)\(z=2\Rightarrow t=4\)( Thỏa mãn )

Vậy \(x=1;y=3;z=2;t=4.\)

Bình luận (0)
HC
Xem chi tiết
H24
Xem chi tiết
CV
22 tháng 7 2021 lúc 8:40

31(xyzt+xy+xt+zt+1)=40(yzt+y+t)31(xyzt+xy+xt+zt+1)=40(yzt+y+t)

⇒xyzt+xy+xt+zt+1yzt+y+t=4031⇒xyzt+xy+xt+zt+1yzt+y+t=4031

⇒x(yzt+y+t)+zt+1yzt+y+t=4031⇒x(yzt+y+t)+zt+1yzt+y+t=4031

⇒x+zt+1yzt+y+t=4031⇒x+zt+1yzt+y+t=4031

⇒x+1(yzt+y+tzt+1)=4031⇒x+1(yzt+y+tzt+1)=4031

⇒x+1(y+tzt+1)=4031⇒x+1(y+tzt+1)=4031

⇒x+1y+1(zt+1t)=4031⇒x+1y+1(zt+1t)=4031

⇒x+1y+1z+1t=4031⇒x+1y+1z+1t=4031

4031<6231=2⇒x<24031<6231=2⇒x<2

Với x = 0; có :

1y+1z+1t=40311y+1z+1t=4031

⇒y+1z+1t=3140⇒y+1z+1t=3140

Mà 3140<1⇒y<1⇒y=03140<1⇒y<1⇒y=0

⇒1z+1t=3140⇒1z+1t=3140

⇒z+1t=4031⇒z+1t=4031

⋅z=0⇒t=3140∉Z⋅z=0⇒t=3140∉Z(Loại )

⋅z=1⇒t=319∉Z⋅z=1⇒t=319∉Z(Loại )

Với x=1;x=1;ta có :

1y+1z+1t=4031−11y+1z+1t=4031−1

⇒1y+1z+1t=931⇒1y+1z+1t=931

⇒y+1z+1t=319⇒y+1z+1t=319

319<369=4⇒y<4319<369=4⇒y<4

⋅y=0⇒z+1t=931⇒z=0⇒t=319∉Z⋅y=0⇒z+1t=931⇒z=0⇒t=319∉Z(Loại)

⋅y=1⇒z+1t=922⇒z=0⇒t=229∉Z⋅y=1⇒z+1t=922⇒z=0⇒t=229∉Z(Loại)

⋅y=2⇒z+1t=913⇒z=0⇒t=139∉Z⋅y=2⇒z+1t=913⇒z=0⇒t=139∉Z(Loại )

⋅y=3⇒z+1t=94⋅y=3⇒z+1t=94

94<3⇒z<394<3⇒z<3

z=0⇒t=49∉Zz=0⇒t=49∉Zz=1⇒t=45∉Zz=1⇒t=45∉Zz=2⇒t=4z=2⇒t=4( Thỏa mãn )

Vậy x=1;y=3;z=2;t=4.

Bình luận (0)