Những câu hỏi liên quan
TH
Xem chi tiết
NC
Xem chi tiết
NM
Xem chi tiết
NQ
28 tháng 2 2016 lúc 17:50

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3 . k . (k + 1)

k . (k + 1) . [(k + 2) - (k - 1)]

= k . (K + 1) . 3 = 3 . k . (K + 1) => ĐPCM 

Bình luận (0)
TT
28 tháng 2 2016 lúc 17:56

Ta có k(k+1)(k+2) là tích 3 stn nên chia hết cho 6 

         k(k-1)(k+1) là tích 3 stn nên chia hết cho 6

do đó VT chia hết cho 6

xét vế phải  k(k+1) chia hết cho 2 mà nhân thêm 3 nên sẽ chia hết cho 6

VP chia hết cho 6

Do đó với mọi k thuộc N ta luôn có được nghiệm của bài 

Bình luận (0)
DT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết
TD
10 tháng 6 2018 lúc 16:22

a) Xét trên tử

Ta có :

1.5.6 + 2.10.12 + 4.20.24 + 9.45.54

= 1.5.6 + \(^{2^3}\). 1.5.6 + \(^{4^3}\).1.5.6 + \(^{9^3}\).1.5.6

= 1.5.6 ( 2^3 + 4^3 + 9^3 )

Xét mẫu

Ta có :

1.3.5 + 2.6.10 + 4.12.20 + 9.27.45

= 1.3.5 + 2^3 .1.3.5 + 4^3 . 1.3.5 + 9^3 .1.3.5

= 1.3.5 ( 2^3 + 4^3 + 9^3 )

Ta có 

A = \(\frac{1.5.6.\left(2^3+4^3+9^3\right)}{1.3.5.\left(2^3+4^3+9^3\right)}\)= 2

b) Ta có :

 k(k+1)(k+2)-(k-1)k(k+1) = k(k + 1) (k + 2 - k + 1 ) = k( k + 1 ) . 3 = 3k( k + 1 )

Ta có :

S = 1.2 + 2.3 + 3.4 + ... + n(n + 1 )

\(\Rightarrow\)3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1) . 3

3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]

3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)

3S = n(n + 1)(n + 2)

S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bình luận (0)
PT
Xem chi tiết
NB
31 tháng 1 2016 lúc 19:00

mình ko biết

Bình luận (0)
H24
Xem chi tiết
H24
29 tháng 10 2017 lúc 22:10

Sorry là N*

Bình luận (0)