Chúng minh rằng :
A = 1+919+93199+19331994 là số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho 2 số chính phương liên tiếp . Chúng minh rằng tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ .
Gọi hai số chính phương liên tiếp là \(k^2\)và \(\left(k+1\right)^2\)
Ta có: \(k^2+\left(k+1\right)^2+k^2\left(k+1\right)^2\)
\(=k^2+k^2+2k+1+k^4+2k^3+k^2\)
\(=k^4+2k^3+3k^2+2k+1=\left(k^2+k+1\right)^2\)
\(=\left[k\left(k+1\right)+1\right]^2\)là số chính phương lẻ
Vậy tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ ( đpcm )
Chứng minh các số sau không là số chính phương:
a/ A = 1 + 1919 + 93199 + 19931994
Cho 2 số chính phương liên tiếp. Chứng minh rằng tổng 2 số đó cộng với tích của chúng là 1 số chính phương lẻ.
Cho 2 số chính phương liên tiếp.Chứng minh rằng tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ
Cho 2 số chính phương liên tiếp. Chứng minh rằng: tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ
gọi 2 số chính phương liên tiếp là k^2 và (k + 1)^2
theo đề bài ta có :
k^2 + (k+1)^2 + k^2(k+1)^2
= k^2 + k^2 + 2k + 1 + k^2(k^2 + 2k + 1)
= 2k^2 + 2k + 1 + k^4 + 2k^3 + k^2
= k^4 + 2k^3 + 3k^2 + 2k + 1
= k^4 + k^2 + 1 + 2k^3 + 2k^2 + 2k
= (k^2 + k + 1)^2
= [k(k+1)+1]^2
k(k+1) chia hết cho 2 (2 số tự nhiên liên tiếp) => k(k+1) +1 lẻ
=> [k(k+1)+1)^2 là số chính phương lẻ
Giả sử hai số chính phương liên tiếp đó là \(a^2,\left(a+1\right)^2\)
Ta có : \(a^2+\left(a+1\right)^2+a.\left(a+1\right)\)
\(=a^2+a^2+2a+1+a^2+a\)
\(=3a^2+3a+1\)
.....
Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ.
Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:
\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)
\(=n^4+2n^3+3n^2+2n+1\)
Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)
\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)
\(=\left(n+\dfrac{1}{n}+1\right)^2\)
\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)
Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.
Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)
Theo đề ta có :
\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)
\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)^2\)
\(=\left[n\left(n+1\right)+1\right]^2\)
mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)
\(\Rightarrow n\left(n+1\right)+1\) là số lẻ
\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ
\(\Rightarrow dpcm\)
Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ
a) Chứng tỏ rằng phương trình: mx – 3 = 2m – x – 1 luôn nhận x = 2 làm nghiệm với mọi giá trị của m.
b) Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là
một số chính phương lẻ
\(a)\) \(Thay\) \(x=2\) \(\text{ vào }\)\(PT:\)
\(2m-3=2m-2-1.\\ \Leftrightarrow2m-3-2m+2+1=0.\)
\(\Leftrightarrow0=0\) (luôn đúng).
\(\Rightarrow\) PT luôn nhận x = 2 làm nghiệm với mọi giá trị của m.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.