Cho G= \(\frac{5}{3}\)+\(\frac{8}{3^2}\)+\(\frac{11}{3^3}\)+...+ \(\frac{302}{3^{100}}\)
CMR; 2\(\frac{5}{9}\)bé hơn G lớn hơn 3\(\frac{1}{2}\)
Cho G= \(\frac{5}{3}+\frac{8}{3^2}+\frac{11}{3^3}+\frac{302}{3^{100}}\)
CMR \(2\frac{5}{9}< G< 3\frac{1}{2}\)
Cho \(G=\frac{5}{3}+\frac{8}{3^2}+\frac{11}{3^3}+...+\frac{302}{3^{100}}.CMR:2\frac{5}{9}\)<G<3\(\frac{1}{2}\)
bạn có: 3G = (5 + 8/3) + (11/3^2 + 14/3^3 + ... + 299/3^98 + 302/3^99)
G = 5/3 + (8/3^2 + 11/3^3 + .... + 296/3^98 + 299/3^99 + 302/3^100)
bạn có 3G - G = 5 + 8/3 - 5/3 + (11/3^2 - 8/3^2) + (14/3^3 - 11/3^3) + .... + (299/3^98 - 296/3^98) + (302/3^99 - 299/3^99) - 302/3^100
hay 2G = 5 +8/3 - 5/3 + (3/3^2 + 3/3^3 + ... + 3/3^98 + 3/3^99) - 302/3^100
2G = 6 + (1/3 + 1/3^2 +... + 1/3^97 + 1/3^98)
đặt H = 1/3 + 1/3^2 + ... + 1/3^97 + 1/3^98
suy ra ta có 3H = 1 + 1/3 + .... + 1/3^96 + 1/3^97
3H - H = 1 - 1/3^98 hay 2H = 1 - 1/3^98
ở trên bạn có:
2G = 6 + (1/3 + 1/3^2 +... + 1/3^97 + 1/3^98)
hay 2G = 6 + H
hay 4G = 12 + 2H
hay 4G = 12 + 1 - 1/3^98
hay G = 13/4 - (1/3^98)/4
tìm được giá trị của G rồi thì bạn dễ dàng tìm được các bước tiếp theo thôi :D, sr vì tớ lười :D
hn hỏi CM chứ cs phải tìm giá trị của G đâu
Cho G=\(\frac{5}{3}+\frac{8}{3^2}+\frac{11}{3^3}+...+\frac{302}{3^{100}}\)
Chứng minh rằng 11/3<G<7/2
Cho S =\(\frac{5}{3}\)+\(\frac{8}{3^2}\)+\(\frac{11}{3^3}\)+ ... + \(\frac{302}{3^{100}}\)
CMR : \(2\frac{5}{9}\)< S < \(3\frac{1}{2}\)
Mọi người giúp mình nha, mai mình phải nộp rồi
cho L=\(\frac{5}{3}+\frac{8}{3^2}+\frac{11}{3^3}+...+\frac{302}{3^{101}}\) chứng minh L >\(2\frac{5}{9}\)
nhanh nha làm đúng thì mình tick cho
\(\frac{1}{3}L=\frac{5}{3^2}+\frac{8}{3^3}+...+\frac{302}{3^{102}}\)
\(\Rightarrow\frac{2}{3}L=\frac{5}{3}+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\right)-\frac{302}{3^{102}}\)
Đặt \(A=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\right)\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{102}}\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{102}}=\frac{3^{101}-1}{3^{102}}\)
\(\Rightarrow A=\frac{3^{101}-1}{3^{101}.2}\)
do đó \(\frac{2}{3}L=\frac{5}{3}-\frac{302}{3^{102}}+\frac{3^{101}-1}{3^{101}.2}\)
\(=\frac{10.3^{101}-302.2+3\left(3^{101}-1\right)}{2.3^{102}}=\frac{19.3^{101}-607}{2.3^{102}}\)
\(\Rightarrow L=\frac{19.3^{101}-607}{4.3^{101}}\)
đến đó chứng minh dễ rồi đúng k??? :P
1 CMR:
B=\(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+.....+\frac{3n+1}{3^n}< \frac{11}{4}\)(n thuộc N*;n>3)
A=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
C=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^{20}-1}{3^{20}}>19\frac{1}{2}\)
Có : \(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow2A< 1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
Có: \(6A< 3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(6A-2A< 3-\frac{1}{3^{99}}< 3\)
\(\Rightarrow4A< 3\Rightarrow A< \frac{3}{4}\)(đpcm)
Cho I =\(\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+.....+\frac{605}{3^{100}}\)
CMR I < 7
Ta có \(I=\frac{11}{3}+\frac{17}{3^2}+...+\frac{605}{3^{100}}\left(1\right)\)
\(\Leftrightarrow3I=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\left(2\right)\)
Lấy \(\left(2\right)trừ\left(1\right)\)ta có
\(3I-I=11+\frac{6}{3}+\frac{6}{3^2}+...+\frac{6}{3^{99}}-\frac{605}{3^{100}}\)
\(\Leftrightarrow2I=11+6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\frac{605}{3^{100}}\)
Xét \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\left(3\right)\)
\(\Leftrightarrow3A=1+\frac{1}{3}+...+\frac{1}{3^{99}}\left(4\right)\)
Lấy\(\left(4\right)-\left(3\right)\)ta có
\(2A=1-\frac{1}{3^{100}}\)
\(\Leftrightarrow6A=3-\frac{1}{3^{99}}\)
Khi đó \(2I=11+3-\frac{1}{3^{99}}-\frac{605}{3^{100}}\)
\(\Leftrightarrow2I=14-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)
Vì\(\frac{1}{3^{99}}+\frac{605}{3^{100}}>0\)
\(\Rightarrow2I< 14\)
\(\Leftrightarrow I< 7\left(đpcm\right)\)
Tính:
a) \(\frac{\frac{3}{5}+\frac{3}{27}-\frac{3}{9}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{27}-\frac{4}{9}-\frac{4}{11}}\)
b) \(\frac{5-\frac{5}{3}-\frac{5}{27}}{8-\frac{8}{3}-\frac{8}{27}}:\frac{15+\frac{15}{121}-\frac{15}{11}}{16+\frac{16}{121}-\frac{16}{11}}\)
c) \(\frac{1}{2}:\left(\frac{-3}{2}\right):\frac{4}{3}:\left(\frac{-5}{4}\right):\frac{6}{5}:\left(\frac{-7}{6}\right):...:\left(\frac{-101}{100}\right)\)
Mọi người nhớ đánh nhanh câu trả lời giúp mình nhé!!
Mọi người đánh giúp mình nhé! Hạn là tối nay!!
Thực hiện phép tính (Tính nhanh nếu có thể) :
a) \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
b) \(\frac{\frac{5}{12}+\frac{1}{8}-\frac{7}{11}}{\frac{49}{11}-\frac{7}{8}-\frac{35}{12}}\)
c)\(\frac{5-\frac{5}{3}-\frac{5}{9}-\frac{5}{27}}{-8+\frac{8}{3}+\frac{8}{9}+\frac{8}{27}}\div\frac{15-\frac{15}{11}-\frac{15}{121}}{16-\frac{16}{11}-\frac{16}{121}}\)
Cây a, bạn nhân cả 2 vế với 3
Lấy vế nhân với 3 trừ đi ban đầu tất cả chia 2
b) Tính như bình thường
Câu c hình như sai đề
Câu c đúng đề bạn ạ, mình nhầm, ngại viết lắm