Cho \(G=\frac{5}{3}+\frac{8}{3^2}+\frac{11}{3^3}+...+\frac{302}{3^{100}}.CMR:2\frac{5}{9}\)<G<3\(\frac{1}{2}\)
Cho I= \(\frac{11}{3}\)+ \(\frac{17}{3^2}\)+ \(\frac{23}{3^3}\)+...+ \(\frac{605}{3^{100}}\)
CMR; I bé hơn 7
Cho đa thức : f(x)=x(x^19-x^5-x^2018) và g(x)= x^2019-x^2020+9+(x^4+x^2+2)
1)Tính k(x)=f(x)+g(x)
2)Tính giá trị của k(x) tại x bằng \(\left(2-\frac{5}{3}+\frac{7}{6}-\frac{9}{10}+\frac{11}{15}-\frac{13}{21}+\frac{15}{28}-\frac{17}{36}+\frac{19}{45}\right)\cdot\frac{5}{6}\)
3) CMR k(x) không nhận giá trị 2019 với mọi giá trị nguyên x
\(\left(8-\frac{9}{4}+\frac{2}{7}\right)-\left(-6-\frac{3}{7}+\frac{5}{4}\right)-\left(3+\frac{2}{4}-\frac{9}{7}\right)\)\(\frac{9}{7}\))
\(\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}+\frac{13}{15}+\frac{11}{13}-\frac{9}{11}+\frac{7}{9}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)
\(\frac{1}{2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-\frac{1}{2012.2011}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
Tính nhanh
a) \(A=\frac{1}{3}-\frac{3}{4}-\left(\frac{3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
b) \(B=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{11}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}\)
c)\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
Bài 1: A= \(\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}+\frac{13}{15}+\frac{11}{13}-\frac{9}{11}+\frac{7}{8}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)
Bài 2:Tìm x , 3x.\(\left(x-\frac{2}{3}\right)=0\)
sắp xếp từ bé đến lớn;
\(-4\frac{23}{30};\frac{-3}{2};\frac{-4}{5};\frac{-4}{3};\frac{-11}{12};\frac{9}{-7};\frac{-13}{10}-100;-2\frac{331}{385};-3\)
đúng và nhanh tui tick*** cam đoan là đúng...mk thi olp nên sai thì mk BƠ lun ...
a. \(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}\)
b. \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)
c. \(\left(6\frac{4}{9}+3\frac{7}{11}\right)-4\frac{4}{9}\)
d. \(\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-0,25-\frac{1}{12}\right)\)
e. \(-1,5\cdot\left(1+\frac{2}{3}\right)\)
f. \(1^2+2^2+3^2+...+100^2\)