Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
GL

\(1,A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)

2, Với x>1 ta có \(\frac{1}{A}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}\)

\(=\sqrt{x}-1+\frac{3}{\sqrt{x}-1}+3\)

Áp dụng bđt AM-GM ta có

\(\frac{1}{A}\ge2\sqrt{\left(\sqrt{x}-1\right).\frac{3}{\sqrt{x}-1}}+3=2\sqrt{3}+3\)

Dấu "=" xảy ra khi \(\left(\sqrt{x}-1\right)^2=3\Rightarrow\sqrt{x}=\pm\sqrt{3}+1\)

\(\Rightarrow x=\left(\pm\sqrt{3}+1\right)^2=4\pm2\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NT
6 tháng 7 2019 lúc 19:22

\(a,ĐKXĐ:x\ge0;x\ne4\)

Ta có: \(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+2}{x-4}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2x-4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

Vậy....

\(b,ĐKXĐ:x\ge0;x\ne4\)

\(ĐểP=2\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}=2\)

\(\Leftrightarrow2\left(\sqrt{x}+2\right)=3\sqrt{x}\)

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow3\sqrt{x}-2\sqrt{x}=4\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\text{(Thỏa mãn ĐKXĐ)}\)

Vậy...

Bình luận (0)
HH
13 tháng 12 2020 lúc 14:59

a) 

\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+2}{x-4}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

b) Thay P = 2 vào , ta được :

\(2=\frac{3\sqrt{x}}{\sqrt{x}+2}\Leftrightarrow2\sqrt{x}+4=3\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)

Vậy x = 16 thì P = 2

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
PT
5 tháng 10 2017 lúc 19:39

giúp mk vs

Bình luận (0)
CD
Xem chi tiết
NM
Xem chi tiết
DA
Xem chi tiết
LH
3 tháng 7 2021 lúc 11:58

\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)

Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi x=0 (tm)

Vậy \(A_{max}=\dfrac{1}{2}\)

Bài 2:

Đk: \(x\ge3;y\ge5;z\ge4\)

Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)

Áp dụng AM-GM có:

\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)

\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)

\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)

Cộng vế với vế \(\Rightarrow VT\ge20\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)

Vậy...

Bình luận (2)
SN
Xem chi tiết
PL
Xem chi tiết
9T
10 tháng 12 2021 lúc 21:50

undefinedundefinedundefined

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 11 2023 lúc 12:04

2: \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5-10}{\sqrt{x}+5}\)

\(=1-\dfrac{10}{\sqrt{x}+5}\)

\(\sqrt{x}+5>=5\forall x\)

=>\(\dfrac{10}{\sqrt{x}+5}< =\dfrac{10}{5}=2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}>=-2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}+1>=-2+1=-1\forall x\)

Dấu '=' xảy ra khi x=0

Vậy: \(A_{min}=-1\) khi x=0

Bình luận (0)