cho S=1-1/2+1/3-1/4+...+1/2011-1/2012+1/2013 và P=1/1007+1/1008+...+1/2013
Tính (s-P)^2013
cho S=1-1/2+1/3-1/4+...+1/2011-1/2012+1/2013 và P=1/1007+1/1008+...+1/2013
Tính (s-P)^2013
Cho S=1-1/2+1/3-1/4+...+1/2011-1/2012+1/2013 và P=1/1007+1/1008+...+1/2013.Tính (S-P)^2013
S-P= (1 - 1/2 + 1/3 - 1/4 +...+ 1/2011 - 1/2012 + 1/2013) - ( 1/1007 + 1/1008 +...+ 1/2012 + 1/2013 )
S-P= (1- 1/2 + ... + 1/1005 - 1/1006) - 2.(1/1008 + 1/1010 + 1/1012 +...+ 1/2012)
S-P= 1+1/2+1/3+...+1/1006 - 2.( 1/2 + 1/4 + 1/6 +...+ 1/2012)
S-P= 1 + 1/2 + 1/3 +...+ 1/1006 - ( 1+ 1/2 + 1/3 +...+ 1/1006 )
S-P= 0
Suy ra (S-P)^2013 = 0
cho S= 1-1/2+1/3-1/4+..........+1/2011-1/2012+1/2013
va P=1/1007+1/1008+............+ 1/2012+1/2013
tinh (s-p)^2013
link này nè bn!
https://olm.vn/hoi-dap/detail/103540952175.html
S-P= (1 - 1/2 + 1/3 - 1/4 +...+ 1/2011 - 1/2012 + 1/2013) - ( 1/1007 + 1/1008 +...+ 1/2012 + 1/2013 )
S-P= (1- 1/2 + ... + 1/1005 - 1/1006) - 2.(1/1008 + 1/1010 + 1/1012 +...+ 1/2012)
S-P= 1+1/2+1/3+...+1/1006 - 2.( 1/2 + 1/4 + 1/6 +...+ 1/2012)
S-P= 1 + 1/2 + 1/3 +...+ 1/1006 - ( 1+ 1/2 + 1/3 +...+ 1/1006 )
S-P= 0
(S-P)^2013 = 0
Cho S = -1/2 + 1/3 - 1/4 +......+1/2011 - 1/2012 + 1/2013 và P = 1/1007 + 1/1008 + .......+ 1/2012 + 1/2013
Tính (S - P)2013
S = 1/3+1/5+1/7+...+1/2013-(1/2+1/4+1/6+...+1/2012)
S = 1/2+1/3+1/4+...+1/2012+1/2013 - 2(1/2+1/4+1/6+...+1/2012)
S = 1/2+1/3+1/4+...+1/2012+1/2013 - (1+1/2+1/3+...+1/1006)
S = 1/1007+1/1008+...+1/2013-1
=> S - P = 1/1007+1/1008+...+1/2013-1-(1/1007+1/1008+...+1/2013)
<=> S - P= -1 <=> (S-P)2013 = -1
S=1-1/2+1/3-1/4+...+1/2011-1/2012+1/2013 VÀ P=1/1007+1/1008+...+1/2013 TÍNH (S-P)^2016
Cho S = 1-1/2+1/3-1/4+...+1/2011-1/2012+1/2013
P= 1/1007+1/1008+....+1/2012+1/2013
Tính : (S - P)^2013
Gắng làm cho mik nhak! MIK đag cần gấp lắm.
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1006}\)
\(S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}=P\)
=>(S-P)2013=02013=0
cảm ơn pạn nhak Tuấn Minh. Kết bạn nhak.
Cho \(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\) và \(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\). Tính \(\left(S-P\right)^{2013}\)
Biển Cửa Lò, chùa Thiên mụ, núi Ngũ Hành Sơn, chùa Cầu Hội An, kinh thành Huế, đèo Hải Vân
🐼🐼🐼
Ta có:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{1006}\)
\(=\frac{1}{1007}+\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2012}+\frac{1}{2013}\left(1\right)\)
Mà \(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow S=P\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
Vậy...
Tự mình trả lời thì đăng câu hỏi làm gì ngáo đá😂😂😂
cho S=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
va P=\(\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)
tinh (S-P)2013
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(=\left(1+\frac{1}{3}+......+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.......+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+........+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+......+\frac{1}{2013}\)
\(=P\)
\(\Leftrightarrow S-P=0\)
\(\Leftrightarrow\left(S-P\right)^{2013}=0\)
Cho mình hỏi sao lại trừ 2 lần (1/2 - 1/4 ....) thế ạ
Dạ thôi mình biết rồi ạ
Cho:
S=1-(1/2)+(1/3)-(1/4)+...+(1/2011)-(1/2012)+(1/2013)
P=(1/1007)+(1/1008)+...+(1/2013)
Tính (S-P)^2013
*Giúp mình nhé!! Giải chi tiết luôn nhé (chứ làm tắt mình ko hiểu)!! Mình tick cho!!*
Ta có :
\(S=\left(1+\frac{1}{3}+..+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}=P\)
\(\Rightarrow\left(s-p\right)^{2013}=0^{2013}=0\)
Thanks bạn nhiều nhé!! Tặng bạn 1 tk :>
Mà bạn ơi làm giúp mình bài này nữa đc ko??