Tìm giá trị nhỏ nhất của biểu thức: F(x) = \(x^4-2x^3+3x^2-2x+2\)
a) 5x/2x+2 +1=-6/x+1
b) x2-6/x = x+3/2
c) Tìm x sao cho giá trị của biểu thức 3x-2/4 không nhỏ hơn giá trị của biểu thức 3x+3/6
d) Tìm x sao cho giá trị của biểu thức (x+1)2 không nhỏ hơn giá trị của biểu thức (x-1)2
e) Tìm x sao cho giá trị của biểu thức 2x-3/35 + x(x-2)/7 không lớn hơn giá trị của biểu thức x^2/7-2x-3/5
f) Tìm x sao cho giá trị của biểu thức 3x-2/4 không lớn hơn giá trị của biểu thức 3x+3/6
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
Tìm giá trị nhỏ nhất của các biểu thức sau
E=(2x – 5)10 – 12 F=(x+5)8+|x+5|+ 22
Tìm giá trị lớn nhất của các biểu thức sau
G=17-|3x-2| K= 17-|3x-2|- (2-3x)2020
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
Tìm giá trị nhỏ nhất của biểu thức P=x^4+2x^3++3x^2+2x+1
\(P=x^4+2x^3+3x^2+2x+1\)
\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2\)
\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)
\(=\left(x^2+x+1\right)^2\)
giải tiếp :
Vì \(x^2+x+1=\left(x^2+2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Nên \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
Dấu "=" xảy ra khi và chỉ khi \(x=-\frac{1}{2}\)
bạn kacura làm thiếu rồi mình bổ sung tiếp bạn ấy nha:
ta có :P là giá trị nhỏ nhất khi \(x^2+x+1\)là nhỏ nhất( giá trị nhỏ nhất của biểu thức)
\(\Leftrightarrow x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
đẳng thức xảy ra khi : \(x=\frac{-1}{2}\)
\(\Leftrightarrow P\ge\left(\frac{3}{4}\right)^2\)
\(\Leftrightarrow P\ge\frac{9}{16}\)
=> GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC LÀ:\(\frac{1}{2}\)
bài này học nhóm nên mk biết làm:
# chúc bạn học tốt #
1. Giá trị lớn nhất của -17- (x-3)^2
2.Giá trị nhỏ nhất của biểu thức A= x(x+1) +3/2
3.Giá trị lớn nhất của biểu thức A = -2x^2 +5 -5
4.Giá trị nhỏ nhất của 3x^2 +2x +28/3
5.Giá trị của x để x^2 -48x +65 đạt giá trị nhỏ nhất
6.GIá trị của x để biểu thức B=3 - x^2 +2x
7.Giá trị của x để 3(2x +9)^2 -1 đạt giá trị nhỏ nhất
8.Hệ số của x trong khai triển của đa thức (1/2x +2 )^2
Ai giúp mình với !
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(5.\)
\(x^2-48x+65\)
\(=\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)
Vậy \(Max=-511\)khi \(x=24\)
Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của các biểu thức sau: x^2-4x+10; (1-x)(3x-4); 3x^2-9x+5; -2x^2+5x+2; -3x^2-6x+5; x^4-2x^2+3.
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
a) Tìm x sao cho giá trị biểu thức \(\dfrac{3x-2}{4}\)không nhỏ hơn giá trị của biểu thức \(\dfrac{3x+3}{6}\)
b) Tìm x sao cho giá trị của biểu thức (x+1)2 nhỏ hơn giá trị của biểu thức (x-1)2.
c) Tìm x sao cho giá trị của biểu thức \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn giá trị của biểu thức \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)
=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)
=>18x-12>=12x+12
=>6x>=24
=>x>=4
b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)
=>\(x^2+2x+1< x^2-2x+1\)
=>4x<0
=>x<0
c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì
\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)
=>\(2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
=>x<=4
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức sau
5)E = (x -1)(x +2)(x +3)(x +6)
6) F = (x +1)² + (2x – 1)²
7)
G = x⁴ – 2x³ + 3x² – 4x + 2005
\(F=\left(x+1\right)^2+\left(2x-1\right)^2=x^2+2x+1+4x^2-4x+1=5x^2-2x+2=\left(x\sqrt{5}\right)^2-2x\sqrt{5}.\dfrac{1}{\sqrt{5}}+\dfrac{1}{5}+\dfrac{9}{5}=\left(x\sqrt{5}+\dfrac{1}{\sqrt{5}}\right)^2+\dfrac{9}{5}\ge0\)- minF=\(\dfrac{9}{5}\)⇔\(x\sqrt{5}+\dfrac{1}{\sqrt{5}}=0\)⇔x=\(\dfrac{-1}{5}\)
\(E=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\text{≥}-36\) ∀x (vì \(\left(x^2+5x\right)^2\text{≥}0\))
MinE=-36 ⇔ \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(G=x^4-2x^3+3x^2-4x+2005=x^4-x^3-x^3+x^2+2x^2-2x-2x+2+2003=x^3\left(x-1\right)-x^2\left(x-1\right)+2x\left(x-1\right)-2\left(x-1\right)+2003=\left(x-1\right)\left(x^3-x^2+2x-2\right)+2003=\left(x-1\right)\left[x^2\left(x-1\right)+2\left(x-1\right)\right]+2003=\left(x-1\right)^2\left(x^2+2\right)+2003\ge0\)- minG=2003 ⇔x-1=0 ⇔x=1.
Tìm giá trị nhỏ nhất của biểu thức A= |x - 2| + |2x - 3| + |3x - 4|
bài này lm kiểu j z các bn
Cho biểu thức : A= x-1/3x và B= ( x+1/2x-2 + 3x-1/x2 - 1 - x+3/2x+2) : 3/x+1 Với x # 0,x# -1,1.
a)Rút gọn biểu thức B
b)Tính giá trị của biểu thức A khi x thỏa mãn x2 - 2x = 0
c) tìm giá trị của x để B/A đạt giá trị nhỏ nhất .
b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)