Cho a,b,c > 0 và \(a^3+b^3+c^3=3\)
CMR: \(\frac{a}{b+2}+\frac{b}{c+2}+\frac{c}{a+2}\le1\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. CHo \(\frac{1}{a}+\frac{1}{b}=\frac{2}{b}\)(a,b ,c >0 )
CMR: \(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)
2. CHo a,b,c > 0 và a2 + b2 + c2 = 3. CMR: a2b + b2c + c2a < = 3
3. CHo a,b,c thõa mãn a + b + c = 3. CM: \(\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\le1\)
4. CHo a,b,c > 0 thõa mãn a + b + c < = 3/2
CM: \(P=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\ge343\)
Mình xem phép làm câu 1 ạ.
Đề là?
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)
Chứng minh tương đương
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc - 9ab + 6b2 \(\le\)0 ( quy đồng ) (2)
Từ (1) <=> 2ac = ab + bc Thay vào (2) <=> 6ab + 6bc - 9bc - 9ab + 6b2 \(\le\)0
<=> a + c \(\ge\)2b
Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng
Dấu "=" xảy ra <=> a = c = b
Cho a,b,c>0. Cmr: a) \(\frac{ab}{a^2+bc+ca}+\frac{bc}{b^2+ca+ab}+\frac{ca}{c^2+ab+bc}\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)
b) \(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\le1\)
a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)
b thiếu đề
@tth_new, @Nguyễn Việt Lâm, @No choice teen, @Akai Haruma
giúp e vs ạ! Cần gấp
Thanks nhiều
a,b,c>0, a+b+c=3. CMR
\(\frac{a}{a^2+b+c}+\frac{b}{b^2+c+a}+\frac{c}{c^2+a+b}\le1\)
Giúp mình mấy câu này với nhé các ban.
1) Cho a,b,c>0 cmr:\(\frac{a}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{b^2+c^2}}+\frac{c}{\sqrt{c^2+a^2}}\le\frac{3}{\sqrt{2}}\)
2)Cho a,b,c>0 và abc=1. Cmr:\(\sqrt{\frac{a}{4a+4b+1}}+\sqrt{\frac{b}{4b+4c+1}}+\sqrt{\frac{c}{4c+4a+1}}\le1\)
3)Cho a,b,c>0 tm a+b+c=3 Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
Mình cảm ơn các bạn nhiều
Bài 1:
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si ta có:
\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)
\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)
Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)
Cộng lại ta được:
\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)
Sau đó bình phương hai vế rồi
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng
Vậy...
Bài 2:
Trước hết ta chứng minh bất đẳng thức sau:
\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)
Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau:
\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)
\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)
\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)
Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)
Từ đó ta có:
\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)
Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có
\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)
Dấu = xảy ra khi a=b=c
c bạn tự làm nhé mình mệt rồi :D
1,cho a,b,c>0 . CMR: \(\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}\le\frac{3}{4}\)
2,CHo a,b,c>0 thỏa mãn a+b+c <= ab+bc+ca
CMR: \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le1\)
3, Cho a,b,c>0 thoaor mãn a+b+c=3
CMR: \(\frac{1}{2ab^2+1}+\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}\ge1\)
Dùng bđt bunhiacopxki nha
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Bạn @Diệu Linh@ làm nhầm dòng 5 rồi nhé
2, BĐT ban đầu
<=> \(\left(1-\frac{1}{1+a+b}\right)+\left(1-\frac{1}{1+b+c}\right)+\left(1-\frac{1}{1+a+c}\right)\ge2\)
<=> \(\frac{\left(a+b\right)^2}{a+b+\left(a+b\right)^2}+\frac{\left(b+c\right)^2}{b+c+\left(b+c\right)^2}+\frac{\left(c+a\right)^2}{c+a+\left(c+a\right)^2}\ge2\)
Dùng BĐT buniacoxki dạng phân thức ở VT
\(VT\ge\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)+\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}\)
Mà \(a+b+c\le ab+bc+ac\)
=> \(VT\ge\frac{4\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)+2\left(a^2+b^2+c^2+ab+bc+ac\right)}=\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=2\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
cho a,b,c >0
cmr \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)
cmr \(\frac{\sqrt{ab}}{c+2\sqrt{ab}}+\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ca}}{b+2\sqrt{ca}}\le1\)
a) Ta có BĐT:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)
Khi \(a=b=c\)
câu 1 . Theo bđt côsi ta có \(a^3+b^3\ge ab(a+b)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab(a+b)+abc}=\frac{1}{ab(a+b+c)}=\frac{c}{abc(a+b+c)}\)
tương tự \(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc(a+b+c)}\)và\(\frac{1}{a^3+c^3+abc}\le\frac{b}{abc(a+b+c)}\)
Cộng vế theo vế ta có \(\frac{1}{b^3+c^3+abc}+\frac{1}{b^3+a^3+abc}+\frac{1}{a^3+c^3+abc}\le\frac{a+b+c}{abc(a+b+c)}=\frac{1}{abc}\)
\(\RightarrowĐPCM\)
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm a^2+b^2+c^2 bé hơn hoặc bằng abc. Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm a+b+c<=3. Cmr \(\frac{ab}{\sqrt{3+c}}+\frac{bc}{\sqrt{3+a}}+\frac{ca}{\sqrt{3+b}}\le\frac{3}{2}\)
4) Cho a,b,c>0 tm a+b+c=2. Cmr \(\frac{a}{\sqrt{4a+3bc}}+\frac{b}{\sqrt{4b+3ca}}+\frac{c}{\sqrt{4c+3ab}}\le1\)
5) Cho a,b,c>0. Cmr \(\sqrt{\frac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\frac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\frac{c^3}{5c^2+\left(a+b\right)^2}}\le\sqrt{\frac{a+b+c}{3}}\)
6) Cho a,b,c>0. Cmr \(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\le\frac{1}{3}\)
Giúp mình với nhé các bạn
Cho a,b,c>0, ab+bc+ca=3.
CMR \(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\le1\)
Áp dụng bđt cauchy dạng engel ta có:
\(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+b^2+c^2+c^2+a^2+1+1+1}\)
\(=\frac{9}{2\left(a^2+b^2+c^2\right)+3}\le\frac{9}{2\left(ab+bc+ca\right)+3}=\frac{9}{2.3+3}=1\left(đpcm\right)\)
Dấu "=" xảy ra khi a=b=c
Hình như bạn sai thì phải nhưng mình lỡ k r
1 bên \(\ge\)
1 bên \(\le\)
Sao so sánh đc
Vì \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\frac{1}{a^2+b^2+c^2}\le\frac{1}{ab+bc+ca}\)
Cho a,b,c>0 và a+b+c=3.Chứng minh:
\(\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}\le1\)