chứng tỏ 2n+1 và n + 2 là hai số có nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Gọi d=ƯCLN(2n+1;2n^2-1)
=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d
=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d
=>n+1 chia hết cho d và 2n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau
Mk xin góp ý vs Phước Thịnh một chút : cách trình bày của bn sai rùi nhé , đây là toán chứ ko phải văn nên trình bày theo kiểu mỗi ý nhỏ một dòng nhe ; hết 2 ý chính thì cách một dòng ; kiệm chữ một chút , thêm số và kí hiệu nhé
Chứng tỏ rằng 2n+1 và 2n+3 (n thuộc N ) là hai số nguyên tố cùng nhau
Đặt d ϵ Ư( 2n+1; 2n+3) ĐK: d ϵ N*
=> 2n+1 chia hết cho d, 2n+3 chia hết cho d
=> (2n+3)-(2n+1) chia hết cho d
=> 2 chia hết cho d => d ϵ Ư(2) => d ϵ {1;2} (vì d ϵ N*)
Mặt khác, d là ước của 2 số lẻ 2n+1 và 2n+3 nên d=1.
=> Ư(2n+1; 2n+3)=1
Vậy 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
Chứng tỏ 2n+1 và 3n+2 là hai số nguyên tố cùng nhau, với (n là số tự nhiên)
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
Ta có 2n+1 =6n+3
3n+2=6n+4
gọi d là ước của 6n+3 và 6n+4
Ta có (6n+3)-(6n+4) chia hết cho d
=> 1 chia hết cho d
=> d=1
vậy 2n+1 vafn+2 là 2 số nguyên tố cùng nhau
Chứng tỏ :
2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau với n thuộc N
Chứng tỏ rằng:
2n+1 và 2n+3(n thuộc N) là hai số nguyên tố cùng nhau
Gọi UCLN(2n+1; 2n+3) là d
Ta có:2n+1 chia hết cho d =>2n+3-2n+1 chia hết cho d =>2chia hết cho d =>d thuộc {1:2}
2n+3 chia hết cho d
Mà 2n+1 là số lẻ =>d Không thuộc {2}
Vậy d thuộc {1}=>2n+1 và 2n+3 là 2 số nguyên tố cùng nhau.
\(\text{Gọi }\left(2n+1,2n+3\right)=d\)
\(\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(2n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)=2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
\(\text{Dễ thấy }\hept{\begin{cases}2n+1\text{không chia hết cho 2 }\\2n+3\text{không chia hết cho 2 }\end{cases}}\)
\(\Rightarrow d\ne2\Rightarrow d=1\)
\(\text{Vậy }\left(2n+1,2n+3\right)=1\)
Chứng tỏ (2n+1) và (2n^2-1) là hai số nguyên tố cùng nhau
Cho số tự nhiên n. Chứng tỏ n+2 và 2n+3 là hai số nguyên tố cùng nhau
Gọi ƯCLN(n+2;2n+3)=d
Ta có: n+2 chia hết cho d
2(n+2) chia hết cho d
2n+4 chia hết cho d
có 2n+3 chia hết cho d
=>2n+4-(2n+3) chia hết cho d
2n+4-2n-3 chia hết cho d
(2n-2n)+(4-3) chia hết cho d
1 chia hết cho d hay d=1
=>ƯCLN(n+2;2n+3)=1
Do đó n+2 và 2n+3 là 2 số nguyên tố cùng nhau
Vậy n+2 và 2n+3 là 2 số nguyên tố cùng nhau
Chứng tỏ rằng 2n+1 và 3n+1(n là số tự nhiên) là hai số nguyên tố cùng nhau
Gọi ƯCLN 2 số trên là a
2n+1 chia hết cho a=> 3(2N+1)chia hết cho a=> 6n+3 chia hết cho a(1)
3n+1chia hết cho a=>2(3N+1)chia hết cho a=>6N+2 chia hết cho a(2)
tỪ (1) VÀ (2), TA CÓ (6n+3)-(6n+2) chia hết cho a
=> 1 chia hết cho a
=>a=1
vậy n+1 va 3n+1(n la so tu nhien) la hai so nguyen to cung nhau