Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
EN
Xem chi tiết
LC
5 tháng 10 2019 lúc 17:00

Vì \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

\(\Rightarrow\frac{x}{a}=\frac{4x}{4a}=\frac{2y}{2b}=\frac{5y}{5b}=\frac{3z}{3c}=\frac{6z}{6c}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{a}=\frac{4x}{4a}=\frac{2y}{2b}=\frac{5y}{5b}=\frac{3z}{3c}=\frac{6z}{6c}=\frac{x+2y-3z}{a+2b-3c}=\frac{4x-5y+6z}{4a-5b+6c}\)

                                                           \(\Rightarrow\frac{x+2y-3z}{4x-5y+6z}=\frac{a+2b-3c}{4a-5b+6c}\left(đpcm\right)\)

Bình luận (0)
NL
Xem chi tiết
NU
20 tháng 9 2019 lúc 11:57

\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)

\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)

\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)

Bình luận (0)
NL
20 tháng 9 2019 lúc 12:08

mọi người giúp mk câu b, c, d còn lại nha

Bình luận (0)
NT
Xem chi tiết
SN
14 tháng 8 2017 lúc 19:58

Áp dụng tính chất dãy tỉ số bằng nhau :
a/x=b/y=c/z=a/x=2b/2y=3c/3z=a+2b-3c/x+2y-3z
=>4a/4x=5b/5y=6c/6z=4a-5b+6c/4x-5y+6z
=>a+2b-3c/x+2y-3z=4a-5b+6c/4x-5y+6z=a+2b-3c/4a-5b+6c=x+2y-3z/4x-5y+6z
Vậy ta có điều phải chứng minh
2/ Theo đề bài ta có:
\(^{^{ }a^2}\)=bc=>\(\dfrac{a}{b}\)=\(\dfrac{c}{a}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{a}{b}\)=\(\dfrac{c}{a}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)=\(\dfrac{a+b}{c+a}\)(*)
=>\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)=\(\dfrac{a-b}{c-a}\)(**)
Từ (*) và (**) suy ra :
\(\dfrac{a+b}{c+a}\)=\(\dfrac{a-b}{c-a}\)=\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+a}{c-a}\)
Từ đó ta có điều phải chứng minh
b) Theo đề bài ta có:
\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+a}{c-a}\)=>(a+b).(c-a)=(a-b).(c+a)
=>ac-a^2+bc-ab=ac+a^2-bc-ab
=>ac-ac+ab-ab-a^2-a^2=-bc-bc
=>-a^2-a^2= -bc-bc
=>-2a^2=-2bc
=>a^2=bc

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
NA
16 tháng 4 2019 lúc 21:50

Thiếu đề <3            

Bình luận (0)
LT
Xem chi tiết
MT
Xem chi tiết
TT
30 tháng 6 2017 lúc 9:18

\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{2b}{2y}=\frac{-3c}{-3z}=\frac{a+2b-3c}{x+2y-3z}\)

Bình luận (0)
ND
Xem chi tiết
TK
Xem chi tiết

a) x = 10 ; y = 8

Bình luận (0)
HS
21 tháng 8 2020 lúc 15:43

Ta có : 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)

Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)

=> xy = 5k.4k = 20k2

=> 20k2 = 80

=> k2 = 4 => k = \(\pm2\)

Với k = 2 thì x = 5.2 = 10 , y = 4.2 = 8

Với k = -2 thì x = 5.(-2) = -10 , y = 4(-2) = -8

b) Ta có : \(2a=5b=3c\)=> \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{3}}=\frac{a+b-c}{\frac{1}{2}+\frac{1}{5}-\frac{1}{3}}=\frac{-44}{\frac{11}{30}}=-120\)

Từ đó suy ra a = -60,b = -24,c = -40

Bình luận (0)
 Khách vãng lai đã xóa
KN
21 tháng 8 2020 lúc 15:56

a. Ta có : \(4x=5y\Rightarrow x=\frac{5}{4}y\)

Mà xy = 80

\(\Rightarrow\frac{5}{4}y.y=80\)

\(\Rightarrow y^2=64\)

\(\Rightarrow y^2=8^2\)

=> y = 8 hoặc y = - 8

+) y = 8 => x = 80 : y = 80 : 8 = 10

+) y = - 8 => x = 80 : ( - 8 ) = - 10

Vậy các cặp ( x ; y ) thỏa mãn đề bài là : ( 10 ; 8 ) ; ( - 10 ; - 8 )  

b. \(2a=5b=3c\Rightarrow\frac{2a}{30}=\frac{5b}{30}=\frac{3c}{30}\Rightarrow\frac{a}{15}=\frac{b}{6}=\frac{c}{10}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{15}=\frac{b}{6}=\frac{c}{10}=\frac{a+b-c}{15+6-10}=\frac{-44}{11}=-4\)

Suy ra :

+) \(\frac{a}{15}=-4\Leftrightarrow a=-60\)

+) \(\frac{b}{6}=-4\Leftrightarrow b=-24\)

+) \(\frac{c}{10}=-4\Leftrightarrow c=-40\)

Bình luận (0)
 Khách vãng lai đã xóa