Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)
CMR: \(\frac{a^2}{b^2}=\frac{2c^2-ac}{2d^2-bd}\)
Cho tỉ lệ thức \(\frac{a}{b}\)= \(\frac{c}{d}\). Chứng minh
A) \(\frac{a^2-c^2}{b^2-d^2}\)= \(\frac{ac}{bd}\)
b)\(\frac{a+2c}{6+2d}\)= \(\frac{a-3c}{b-3d}\)( giả thiết các tỉ số đều có nghĩa)
Nhanh nha mn !!"
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
CMR \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\left(\frac{a}{b}\right)\left(\frac{c}{d}\right)\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)
CMR : (a + 2c).(b+d) = (a+c).(b+2d)
ta có: \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\frac{a}{b}=k\Rightarrow a=bk\)
\(\frac{c}{d}=k\Rightarrow c=dk\)
thay vào \(\left(a+2c\right).\left(b+d\right)=\left(bk+2dk\right).\left(b+d\right)=k.\left(b+2d\right).\left(b+d\right)\)
\(\left(a+c\right).\left(b+2d\right)=\left(bk+dk\right).\left(b+2d\right)=k.\left(b+d\right).\left(b+2d\right)\)
\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(=k.\left(b+2d\right).\left(b+d\right)\right)\)( đ p c m)
CHÚC BN HỌC TỐT!!!!!!!!
Ta có:
\(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
\(ab+ad+2cb+2cd=ab+2ad+cb+2cd\)
\(cb=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Hãy suy ra :
a/ \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
b/\(\frac{2a+3c}{2d+3d}=\frac{2a-3c}{2b-3d}\)
c/ \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)
a/ do \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)(điều phải suy ra)
bạn viết sai đề bài b nhé phân số đầu là \(\frac{2a+3c}{2b+3d}\)
b/ đặt \(\frac{a}{b}\)= \(\frac{c}{d}\) là K
a=Kb;c=Kd
ta có:\(\frac{2a+3c}{2b+3d}\)= \(\frac{2Kb+3Kd}{2b+3d}\) = \(\frac{k\left(2b+3d\right)}{2b+3d}\) = K (1)
\(\frac{2a-3c}{2b-3d}\) = \(\frac{2Kb-3Kd}{2b-3d}\) = \(\frac{k\left(2b-3d\right)}{2b-3d}\) =K (2)
từ (!) và (2) suy ra \(\frac{2a+3c}{2b+3d}\) = \(\frac{2a-3c}{2b-3d}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
Bạn tham Khảo: https://hoc24.vn/hoi-dap/question/230602.html
Cho tỉ lệ thức:\(\frac{a}{b}=\frac{c}{d}.Chứngminh:\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). CMR:
a) \(\frac{a}{b}=\frac{a+2c}{b+2d}\)
b) \(\frac{a-b}{b}=\frac{a+c-b-d}{b+d}\)
Giải:
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\)
\(\Rightarrow\frac{a}{b}=\frac{a+2c}{b+2d}\left(đpcm\right)\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\) (1)
\(\frac{a+c-b-d}{b+d}=\frac{bk+dk-b-d}{b+d}=\frac{\left(bk-b\right)+\left(dk-d\right)}{b+d}=\frac{\left[b\left(k-1\right)+d\left(k-1\right)\right]}{b+d}=\frac{k-1.\left(b+d\right)}{b+d}=k-1\) (2)
Từ (1) và (2) suy ra \(\frac{a-b}{b}=\frac{a+c-b-d}{b+d}\left(đpcm\right)\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Cmr \(\frac{a+4c}{b+4d}=\frac{7a-2c}{7b-2d}\)
Cho a,b,c,d\(\in\)Q+ ,\(\frac{a}{b}\)=\(\frac{c}{d}\).CMR:
a,\(\frac{ac}{bd}\)=\(\frac{a^2+c^2}{b^2+d^2}\)
b,(a+2c).(b+d)=(a+c).(b+2d)
Giải:
a,Từ\(\frac{a}{b}\)=\(\frac{c}{d}\)
=>\(\frac{a}{b}\).\(\frac{c}{d}\)=\(\frac{a}{b}\).\(\frac{a}{b}\)=\(\frac{c}{d}\).\(\frac{c}{d}\)
=>\(\frac{ac}{bd}\)=\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta được:
\(\frac{ac}{bd}\)=\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)=\(\frac{a^2+c^2}{b^2+d^2}\)
=>\(\frac{ac}{bd}\)=\(\frac{a^2+b^2}{c^2+d^2}\) (đpcm)
b,Áp dụng tính chất dãy tỉ số bằng nhau,ta được:
\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{2c}{2d}\)=\(\frac{a+2c}{b+2d}\)=\(\frac{a+c}{b+d}\)
=>\(\frac{a+2c}{b+2d}\)=\(\frac{a+c}{b+d}\)
=>(b+d).(a+2c)=(a+c),(b+2d) (đpcm)
Ta có
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)
Áp dụng tc của dãy tỉ số bằng nhau . Ta có
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)