Những câu hỏi liên quan
NS
Xem chi tiết
HP
13 tháng 12 2020 lúc 11:29

a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)

TH1: \(x=y\)

Phương trình \(\left(1\right)\) tương đương:

\(x^2=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)

TH2: \(x=4-y\)

Phương trình \(\left(2\right)\) tương đương:

\(y^2=4y-4\)

\(\Leftrightarrow y^2-4y+4=0\)

\(\Leftrightarrow\left(y-2\right)^2=0\)

\(\Leftrightarrow y=2\)

\(\Rightarrow x=2\)

Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)

b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

Bình luận (0)
PA
Xem chi tiết
KS
12 tháng 1 2016 lúc 21:09

vì x và y là hai đại lượng tỷ lệ thuận nên:

\(\frac{x1}{x2}=\frac{y1}{y2}=\frac{x1+x2}{y1+y2}=\frac{-1}{-7}=\frac{1}{7}\)            (1)

từ (1) => x=\(\frac{1}{7}y^{ }\)

vậy nếu x=3 thì y = 7.3=21

 

Bình luận (0)
HA
Xem chi tiết
TC
Xem chi tiết
HN
Xem chi tiết
WH
26 tháng 11 2015 lúc 13:18

minh chưa học

ai là bạn của mình đi qua thì tic nha!

Bình luận (0)
HN
26 tháng 11 2015 lúc 13:00

giúp tôi đi

 

Bình luận (0)
DL
Xem chi tiết
DL
10 tháng 12 2017 lúc 13:53

co ai biet lam ko

Bình luận (0)
HQ
Xem chi tiết
BO
Xem chi tiết
H24
Xem chi tiết
TC
1 tháng 6 2016 lúc 8:57

 a) x và y là hai đại lượng tỷ lệ thuận 
nên x1/y1 = x2/y2 
suy ra x1=x2.y1/y2 = 2.(-3/4):1/7 =-21/2 

b) x và y là hai đại lượng tỷ lệ thuận 
nên x1/y1 = x2/y2 
<=> x1/x2 = y1/y2 = (y1-x1)/(y2-x2) (theo t/c của dãy tỷ số bằng nhau) 
Thay số ta có: 
x1/(-4) = y1/3=-2/(3-(-4)) 
<=> x1/(-4) = y1/3=-2/7 
suy ra: 
x1 = (-4).(-2/7)=8/7 
y1 = 3.(-2/7)=-6/7 

k nha mk trả lời đầu đó!!!

Bình luận (0)