Cho A = \(\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\) với x>0
chứng minh rằng: A ko thể nhận giá trị nguyên
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A=\(\dfrac{2x+2}{\sqrt{x}}\)+\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}\)-\(\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\) với x>0 ; x≠1
a)Rút gọn A
b)So sánh A với 5
c)Chứng minh với mọi x thỏa mãn đk thì \(\dfrac{8}{A}\) nhận một giá trị nguyên
a: \(A=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)
b: \(A-5=\dfrac{2x-4\sqrt{x}+2}{\sqrt{x}}=\dfrac{2\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>=0\)
=>A>=5
Cho hai biểu thức:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\); \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\) với \(x\ge0,x\ne4,x\ne9\)
a) Tính giá trị của A khi \(x=\dfrac{1}{4}\)
b) Rút gọn B.
c) Tìm giá trị nguyên của x để B nhận giá trị là số tự nhiên.
a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:
\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)
b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)
\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)
c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)
hay \(x\in\left\{16;25;64\right\}\)
5.Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\).\(\dfrac{\sqrt{x}+1}{\sqrt{x}}\) với x >0,x ≠ 1
a)Chứng minh rằng Q=\(\dfrac{2}{X-1}\)
b)Tìm x ϵ Z để biểu thức A nhận giá trị nguyên
a) \(Q=\) \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne1\right)\)
\(Q=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{2}{x-1}\) \(\left(đpcm\right)\).
b) Để \(Q\in Z\) <=> \(\dfrac{2}{x-1}\in Z\) <=> \(x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
x -1 | 1 | -1 | 2 | -2 |
x | 2(TM) | 0(ko TM) | 3(TM) | -1(koTM) |
Vậy để biểu thức Q nhận giá trị nguyên thì \(x\in\left\{2;3\right\}\)
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}vàB=\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3-5\sqrt{x}}{9-x}\) với x ≥ 0, x ≠ 9
tìm các giá trị nguyên của x để biểu thức P=A.B nhận giá trị nguyên
\(P=A\cdot B\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\cdot\dfrac{2\sqrt{x}+6+x-3\sqrt{x}+3-5\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)}\cdot\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)^2}=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)
Để P nguyên thì
\(2\sqrt{x}⋮\sqrt{x}+3\)
\(\Leftrightarrow2\sqrt{x}+6-6⋮\sqrt{x}+3\)
=>\(\sqrt{x}+3\inƯ\left(-6\right)\)
=>\(\sqrt{x}+3\in\left\{3;6\right\}\)
=>\(\sqrt{x}\in\left\{0;3\right\}\)
=>\(x\in\left\{0;9\right\}\)
Kết hợp ĐKXĐ, ta được: x=0
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\) và B=\(\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3-5\sqrt{x}}{9-x}\) với x ≥ 0,x ≠ 9
Tìm các giá trị nguyên của để biểu thức nhận giá trị nguyên.
tìm các giá trị nguyên của x để biểu thức P=A.B nhận giá trị nguyên
Cho biểu thức A=\(\dfrac{6-2\sqrt{x}}{\sqrt{x}-5}\) và B=\(\dfrac{1}{\sqrt{x}-5}-\dfrac{x+3\sqrt{x}}{25-x}\)với x>0, x # 25.
1) Tính giá trị biểu thức A khi x =16.
2) Chứng minh rằng A +B là một số nguyên.
1: Thay x=16 vào A, ta được:
\(A=\dfrac{6-2\cdot4}{4-5}=\dfrac{-2}{-1}=2\)
Cho 2 biểu thức A= \(\dfrac{7}{\sqrt{x}+8}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)
a) Chứng minh B= \(\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b) Tìm GTLN của B
c) Tìm số nguyên x để biểu thức P = A.B có giá trị là số nguyên.
Cho hai biểu thức \(A=\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\) và \(B=\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\) với x>0, x≠4. Tìm x sao cho \(\dfrac{B}{A}\)nhận giá trị là một số nguyên.
Bài 3: Cho biểu thức: \(A=\dfrac{2x-3\sqrt{x}-2}{\sqrt{x}-2},\) với \(x\ge0\) và x \(\ne4\)
a) Rút gọn A rồi tìm giá trị của x để A \(\le5\)
b) Tìm các giá trị của x để \(\dfrac{A}{2}\) nhận giá trị nguyên
(a) Với \(x\ge0,x\ne4\), ta có:
\(A=\dfrac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
Để \(A\le5\Rightarrow2\sqrt{x}+1\le5\)
\(\Leftrightarrow2\sqrt{x}\le4\Leftrightarrow\sqrt{x}\le2\Leftrightarrow0\le x\le4\).
Kết hợp với điều kiện thì: \(0\le x< 4.\)
(b) \(\dfrac{A}{2}=\dfrac{2\sqrt{x}+1}{2}\) nguyên khi \(\left(2\sqrt{x}+1\right)\in B\left(2\right)=\left\{0;2;4;...;2n\right\}\left(n\in N\right)\)
\(\Leftrightarrow\sqrt{x}\in\left\{-\dfrac{1}{2};\dfrac{1}{2};\dfrac{3}{2};...;\dfrac{2n+1}{2}\right\}\left(n\in N\right)\)
Hay: \(\sqrt{x}\in\left\{\dfrac{1}{2};\dfrac{3}{2};...;\dfrac{2n+1}{2}\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{1}{4};\dfrac{9}{4};...;\dfrac{\left(2n+1\right)^2}{4}\right\}\)