Những câu hỏi liên quan
NH
Xem chi tiết
H24
23 tháng 6 2021 lúc 9:51

`a in ZZ`

`=>6n-4 vdots 2n+1`

`=>3(2n+1)-7 vdots 2n+1`

`=>7 vdots 2n+1`

`=>2n+1 in Ư(7)={+-1,+-7}`

`=>2n in {0,-2,6,-8}`

`=>n in {0,-1,3,-4}`

`b in ZZ`

`=>3n+2 vdots 4n-4`

`=>12n+8 vdots 4n-4`

`=>3(4n-4)+20 vdots 4n-4`

`=>20 vdots 4n-4`

`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`

`=>4n-4 in {+-4,+-20}`

`=>n-1 in {+-1,+-5}`

`=>n in {0,2,6,-4}`

`c in ZZ`

`=>4n-1 vdots 3-2n`

`=>2(3-2n)-7 vdots 3-2n`

`=>7 vdots 3-2n`

`=>3-2n in Ư(7)={+-1,+-7}`

`=>2n in {4,0,-4,10}`

`=>n in {2,0,-2,5}`

Bình luận (2)
H24
23 tháng 6 2021 lúc 9:58

a) đk: \(n\ne\dfrac{-1}{2}\)

Để \(\dfrac{6n-4}{2n+1}\) nguyên

<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên

<=> \(3-\dfrac{7}{2n+1}\) nguyên

<=> \(7⋮2n+1\)

Ta có bảng 

2n+11-17-7
n0-13-4
 tmtmtmtm

 

b)đk: \(n\ne1\)

Để \(\dfrac{3n+2}{4n-4}\) nguyên

=> \(\dfrac{3n+2}{n-1}\) nguyên

<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên

<=> \(3+\dfrac{5}{n-1}\) nguyên

<=> \(5⋮n-1\)

Ta có bảng: 

n-11-15-5
n206-4
Thử lạitmloạitm

loại

 

c) đk: \(n\ne\dfrac{3}{2}\)

Để \(\dfrac{4n-1}{3-2n}\) nguyên

<=> \(\dfrac{4n-1}{2n-3}\) nguyên

<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên

<=> \(2+\dfrac{5}{2n-3}\) nguyên

<=> \(5⋮2n-3\)

Ta có bảng: 

2n-31-15-5
n214-1
 tmtmtmtm

 

Bình luận (0)

Giải:

a) \(\dfrac{6n-4}{2n+1}\)

Để \(\dfrac{6n-4}{2n+1}\) là số nguyên thì \(6n-4⋮2n+1\) 

\(6n-4⋮2n+1\) 

\(\Rightarrow6n+3-7⋮2n+1\) 

\(\Rightarrow7⋮2n+1\) 

\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) 

Ta có bảng giá trị:

2n+1-7-117
n-4-103

Vậy \(n\in\left\{-4;-1;0;3\right\}\) 

b) \(\dfrac{3n+2}{4n-4}\) 

Để \(\dfrac{3n+2}{4n-4}\) là số nguyên thì \(3n+2⋮4n-4\)  

\(3n+2⋮4n-4\) 

\(\Rightarrow12n+8⋮4n-4\) 

\(\Rightarrow12n-12+20⋮4n-4\) 

\(\Rightarrow20⋮4n-4\) 

\(\Rightarrow4n-4\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\) 

Ta có bảng giá trị:

4n-4-20-10-5-4-2-112451020
n-4 (t/m)\(\dfrac{-3}{2}\) (loại)\(\dfrac{-1}{4}\) (loại)0 (t/m)\(\dfrac{1}{2}\) (loại)\(\dfrac{3}{4}\) (loại)\(\dfrac{5}{4}\) (loại)\(\dfrac{3}{2}\) (loại)2 (t/m)\(\dfrac{9}{4}\) (loại)\(\dfrac{7}{2}\) (loại)6 (t/m)

Vậy \(n\in\left\{-4;0;2;6\right\}\) 

c) \(\dfrac{4n-1}{3-2n}\) 

Để \(\dfrac{4n-1}{3-2n}\) là số nguyên thì \(4n-1⋮3-2n\)   

\(4n-1⋮3-2n\) 

\(\Rightarrow6-4n+1⋮3-2n\) 

\(\Rightarrow1⋮3-2n\) 

\(\Rightarrow3-2n\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

3-2n-11
n21

Vậy \(n\in\left\{1;2\right\}\) 

Chúc bạn học tốt!

Bình luận (0)
DH
Xem chi tiết
TD
31 tháng 3 2020 lúc 8:42

A và D nha

tick mik vs

Bình luận (0)
 Khách vãng lai đã xóa
DH
1 tháng 4 2020 lúc 16:04

tick kieu j ban

Bình luận (0)
 Khách vãng lai đã xóa
TG
Xem chi tiết
HT
21 tháng 8 2015 lúc 8:16

đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5

ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d

=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d

=> ( 6n + 5) - 3( 2n + 1) : hết cho d

=> 2 : hết cho d

=> d = 2

mà 2n + 1 ko : hết cho d

=> d = 1( dpcm)

Bình luận (0)
TN
21 tháng 8 2015 lúc 8:29

a) Goi d la UCLN ( n ; n+1 )                       b) Goi d la UCLN ( 3n+2 ;5n+3)

n+1 chia het cho d                                             3n+2 chia het cho d-->5(3n+2) chia het cho d

n chia het cho d                                                 5n+3 chia het cho d-->3(5n+3) chia het cho d

-> n+1-n chia het cho d                                 ->5(3n+2)-3(5n+3) chia het cho d

-> 1 chia het cho d                                        -> 15n+10-15n-9 chia het cho d

Va n va n+1 la hai so ngto cung nhau            - -> 1 chia het cho d

                                                                      Vay 3n+2 va 5n+3 chia het cho d

c) Goi d la UCLN (2n+1;2n+3)                                 d) Goi d la UCLN (2n+1;6n+5)

2n+1 chia het cho d                                                2n+1 chia het cho d-->3(2n+1) chiA het cho d

2n+3 chia het cho d--> 2n+1+2 chia het cho d          6n+5 chia het cho d

->2 chia het cho d                                               ->6n+5-3(2n+1) chia het cho d

--> d \(\in\)U (2)-> d\(\in\) {1;2}                                     -> 6n+5-6n-3 chia het cho d

d=2 loai vi 2n+1 khong chia het cho 2-> d=1         ->2 chia het  cho d

Vay 2n+1 va 2n+3 la hai so ng to cung nhau         --> d \(\in\)U (2)-> d\(\in\) {1;2} 

                                                                           d=2 loai vi 5n+3 k chia het cho 2-->d=1

                                                                       vay 2n+1 va 6n+5 la2 so ng to cung nhAU

 

Bình luận (0)
NT
7 tháng 3 2018 lúc 21:01

ngu het

Bình luận (0)
H24
Xem chi tiết
NP
Xem chi tiết
NN
Xem chi tiết
LL
22 tháng 11 2018 lúc 20:44

a, Gọi d là ƯCLN  của n + 2 và 2n + 3

\(\Rightarrow n+2⋮d\) 

\(\Rightarrow2\left(n+2\right)⋮d\)

\(\Rightarrow2n+4⋮d\)

Mà \(2n+3⋮d\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\) mà d là ƯCLN \(\Rightarrow d=1\)

=> 2 số n + 2 và 2n + 3 là 2 số nguyên tố cùng nhau

b, Gọi d là ƯCLN của 3n + 1 và 2n + 1

\(3n+1⋮d\) và \(2n+1⋮d\)

\(\Rightarrow2\left(3n+1\right)⋮d\)và \(3\left(2n+1\right)⋮d\) 

\(\Rightarrow6n+2⋮d\) và \(6n+3⋮d\)

\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\)mà d là ƯCLN => d = 1

=> 2 số 3n +1 và 2n + 1 là hai số nguyên tố cùng nhau

Bình luận (0)
HM
Xem chi tiết
NT
16 tháng 8 2016 lúc 16:13

a) Ta có: $(3n+2,5n+3)=(3n+2,2n+1)=(n+1,2n+1)=(n+1,n)=1$.

Các câu sau chứng minh tương tự.

 

Bình luận (0)
NL
Xem chi tiết
NT
8 tháng 11 2023 lúc 13:41

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

Bình luận (0)
NM
Xem chi tiết