cho phân thức A= (3m+1)/(m-2)
tìm m là số nguyên dương để A đạt GTLNvới m>=3 . tìm GTLN của Acho phân thức A= (3m+1)/(m-2)
tìm m là số nguyên dương để A đạt GTLNvới m>=3 . tìm GTLN của ACho A = x2 + 11x + m, m là số nguyên dương. Tìm GTLN, GTNN của m để A là tích của 2 đa thức với hệ số nguyên !?!?
"với hệ số nguyên"? Bạn có thể giải thích một chút không?
1, Cho B = 3m + 2 / 4m - 5 ( m thuộc N , M > 1 )
a, Tìm m để b là 1 STN
b, Tìm m để B có giá trị lớn nhất
2, Cho C = 2m + 3 / 3m + 1 ( m thuộc N* )
a, Tìm m để A có GTLN
b, Tìm m để C là 1 STN
c, Tìm m để C là 1 phân số tối giản
Mình đg cần gấp, ai nhanh mình tick cho
cho M=\(\frac{a+5}{a-2}\left(a\inℤ\right)\)
A/tìm a để M là phân số
B/ tính GT của M khi a=2
C/tìm a để M là số nguyên
d/tìm GTLN,GTNN của biểu thức
\(M=\frac{a+5}{a-2}=\frac{\left(a-2\right)+5+2}{a-2}=\frac{\left(a-2\right)+7}{a-2}=\frac{7}{a-2}\)
Để M nguyên
\(\Leftrightarrow7⋮a-2\)
\(\Rightarrow a-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{3;1;9;-5\right\}\)
Vậy...........................
p/s : câu a,b,d quên cách làm r :(
Cho M = n+4 / n -2
a) Tìm n để M là số nguyên
b) Tìm n để M đạt GTLN
a) Để M là số nguyên.
=>n+4 chia hết cho n-2
=>n-2+6 chia hết cho n-2
=>6 chia hết cho n-2
=>n-2=Ư(6)=(-1,-2,-3,-6,1,2,3,6)
=>n=(1,0,-1,-4,3,4,5,8)
Vậy n=1,0,-1,-4,3,4,5,8 để M là số nguyên.
1) Tìm số nguyên m để:
a) Giá trị của biểu thức m- 1 chia hết cho giá trị của biểu thức 2m+ 1.
b) l 3m- 1l < 3
2) Chứng minh rằng \(3^{n+2}-2^{n+4}+3^n+2^n\)chia hết cho 30 với mọi n nguyên dương
a) Lấy 2m+1-2(m-1)\(⋮\)2m+1.
Tìm các giá trị của 2m+1 rồi tìm m
b) Theo đề bài => /m/<2 để /3m-1/<3
a)m-1 chia hết 2m+1
suy ra 2(m-1) chia hết cho 2m+1
\(\Rightarrow\)2m-2\(⋮\)2m+1
\(\Rightarrow\)2(m-1+1)-2\(⋮\)2m+1
Cho biểu thức M= ( x2/ x3-4x + 6/ 6-3x + 1/ x+2) : (x-2 + 10-x2/ x+2)
a. Rút gọn M
b. Tìm các gtri nguyên của x để M đạt GTLN
c. Tìm x để M= 3x
a: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{-1}{x-2}\)
b: Để M đạt giá trị lớn nhất thì x-2=-1
hay x=1
c: Để M=3x thì \(\dfrac{-1}{x-2}=3x\)
\(\Leftrightarrow3x^2-6x+1=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot3\cdot1=36-12=24\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{6}}{6}=\dfrac{3-\sqrt{6}}{3}\\x_2=\dfrac{3+\sqrt{6}}{3}\end{matrix}\right.\)
Cho biểu thức M= ( x2/ x3-4x + 6/ 6-3x + 1/ x+2) : (x-2 + 10-x2/ x+2)
a. Rút gọn M
b. Tìm các gtri nguyên của x để M đạt GTLN
c. Tìm x để M= 3x
Cho A=3m+3/m+1. Tìm m để A là phân số.
Để A là phân số
\(\Leftrightarrow m+1\ne0\\ \Leftrightarrow m\ne-1\)