cho số tự nhiên a, chứng minh rằng \(a^7\equiv a\left(mod\right)42\)
Chứng minh rằng : Nếu a \(\equiv\)1 (mod 2) thì a2 \(\equiv\)1 (mod 8)
Cho ví dụ chứng tỏ rằng \(a^2\equiv b^2\)(mod m) không kéo theo a\(\equiv b\) (mod m)
Cho số tự nhiên a. Chứng minh rằng:\(\left[a^2+8a+7\right]\)chia hết cho\(\left[a+1\right]\)
Ta có : a2 + 8a + 7 = ( a2 + 2a + 1 ) + ( 6a + 6 )
= [ a2 + a + a + 1 ] + ( 6a + 6 )
= [ a( a + 1 ) + ( a + 1 ) ] + 6( a + 1 )
= ( a + 1 ) ( a + 1 ) + 6 ( a + 1 )
= ( a + 1 ) [ ( a + 1 ) + 6 ]
= ( a + 1 ) ( a + 7 )
Vì a + 1 chia hết cho a + 1 => ( a + 1 ) ( a + 7 ) chia hết cho a + 1
=> a2 + 8a + 7 chia hết cho a + 1 ( đpcm )
Theo bài ra ta có : [a2+8a+7] chia hết cho [a+1] =>[a2+8a+7]=[2a+8a+7]=[10a+7] chia hết cho 10[a+1] =>10[a+1] - [10a+7] chia hết cho a+1 =>10a+10-10a-7 chia hết cho a+1 =>3 chia hết cho a+1 =>a+1 thuộc Ư(3)={1;3} => Ta có : a+1 = 1 =>a+0 ; a+1=3 =>a=2 (nhớ xuống dòng bạn nhé) Vậy [a2+8a+7] chia hết cho [a+1]
Chứng minh rằng nếu p là một số nguyên tố lẻ và \(n\inℕ^∗\) , n < p ta có :
( n - 1 )!( p - n )! \(\equiv\left(-1\right)^n\left(mod\:p\right)\)
Giúp mình nha!!!
a) Tìm giá trị lớn nhất của biểu thức: \(B=\left|3x-2\right|-\left|3x+7\right|+1\)
b) Cho \(A=\frac{10^{2006}+53}{9}\)Chứng minh rằng A là một số tự nhiên.
c) Cho \(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)Chứng minh rằng S không phải là số tự nhiên.
Cho A = \(\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\) . Chứng minh rằng A là số tự nhiên chia hết cho 15
Ai làm được thì Help me với!!!!!!!!!!
xét 72012=(72)1006=491006
mà 10062015=......6
nên 491006=.......1
tương tự 392=..........1
nên (72012+392)=.....1-......1=.......0 chia hết 5 còn 3 thì suy nghĩ tiếp mk bt tới đây àk
a) Tìm hai số tự nhiên a,b biết BCNN(a,b) + ƯCLN(a,b) = 15
b) Tìm x nguyên thỏa mãn \(\left|x+1\right|+\left|x-2\right|+\left|x+7\right|=5x-10\)
c) Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
d) Tìm số nguyên n sao cho \(n^2+5n+9\) là bội của n+3
Bạn nào giúp được câu nào thì giúp mk nha
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
`b)` - Ta thấy : `|x+1|+|x-2|+|x+7|>=0`
`-> 5x-10>=0`
`-> 5x>=10`
`-> x>=2`
`-> |x+1|=x+1;|x-2|=x-2;|x+7|=x+7`
- Vậy ta có :
`(x+1)+(x-2)+(x+7)=5x-10`
`<=> x+1+x-2+x+7=5x-10`
`<=> 3x+6=5x-10`
`<=> 3x-5x=-10-6`
`<=> -2x=-16`
`<=> x=8`
Cho 2022 số tự nhiên a(1), a(2), a(3), ..., a(2021), a(2022) khác 0 thỏa mãn:
\(\dfrac{1}{a\left(1\right)}\) + \(\dfrac{1}{a\left(2\right)}\) + ... + \(\dfrac{1}{a\left(2021\right)}\) + \(\dfrac{1}{a\left(2022\right)}\) = 1. Chứng minh rằng: tồn tại ít nhất một số trong 2022 số đã cho là số chẵn.
Chứng minh rằng: \(A=\left(a-1\right)a\left(a+1\right)\left(a+2\right)+1\) là số chính phương với a là số tự nhiên.
Ta có : \(A=\left(a-1\right)a\left(a+1\right)\left(a+2\right)+1\)
\(=\left(a-1\right)\left(a+2\right)a\left(a+1\right)+1\)
\(=\left(a^2+a-2\right)\left(a^2+a\right)+1\)
\(=\left[\left(a^2+a\right)-2\right]\left(a^2+a\right)+1\)
\(=\left(a^2+a\right)^2-2\left(a^2+a\right)+1\)
\(A=\left(a^2+a-1\right)^2\)
Vậy A là số chính phương
A = ( a - 1 ) ( a + 1 ) a( a + 2 ) + 1
A = ( a^2 + a - a - 1 )( a^2 + 2a ) + 1
A = ( a^2 - 1 )( a^2 + 2a ) + 1
A = a^4 + 2a^3 - a^2 - 2a + 1
A=(\(^{ }a^2+a\))(\(a^2+a-2\))+1
dat \(^{a^2+a}\)=t
=>A=t(t-2)+1
=>A=t^2-2t+1
=>A=(t-1)^2=>\(\sqrt{A}\) là 1 số cinh phuong