tìm gtnn của biểu thức| x+3 |+| x+7| +| x+9| +| x+15|
1.Tìm GTNN của các biểu thức sau
A=|x-3|+10
B=-7+(x-1)^2
2.Tìm GTLN của các biểu thức sau
C=-3-|x+2|
D=15-(x-2)^2
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2
1. Tìm GTNN của biểu thức:
A = | x - 3 | + 10
B = -7 + ( x - 1 )^2
C = | y - 3 | + ( x + 2 )^2 - 5
2. Tìm GTLN của biểu thức:
D = (-3) - | x + 2 |
E = 15 - ( x - 2)^2
F = - ( y - 7 )^2 - | x + 5 | + 3
a)Tìm GTNN của biểu thức; A=|x+7|+|x-3|
b)Tìm giá trị nguyên của x để biểu thức B=7-x/x+1 đạt GTNN
Mình cần câu trả lời gấp
Tìm GTLN hoặc GTNN của các biểu thức sau:
a) Q = 9/2 + | 2/5 - x |
b) M = | x +2/3 | - 3/5
c) N = - | 7/4 - x | - 8
a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)
Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).
\(---\)
b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).
\(---\)
c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)
\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)
Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).
a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu "=" xảy ra khi:
\(\dfrac{2}{5}-x=0\)
\(\Rightarrow x=\dfrac{2}{5}\)
Vậy: ...
b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)
Dấu "=" xảy ra:
\(x+\dfrac{2}{3}=0\)
\(\Rightarrow x=-\dfrac{2}{3}\)
Vậy: ...
c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)
Dấu "=" xảy ra:
\(\dfrac{7}{4}-x=0\)
\(\Rightarrow x=\dfrac{7}{4}\)
Vậy: ...
`#\text{ID01}`
a)
`Q = 9/2 + |2/5 - x|`
Vì `|2/5 - x| \ge 0` `AA` `x`
`=> 9/2 + |2/5 - x| \ge 9/2` `AA` `x`
`=>` GTNN của Q là `9/2` khi `|2/5 - x| = 0`
`=> 2/5 - x = 0`
`=> x = 2/5`
b)
`M = |x + 2/3| - 3/5`
Vì `|x + 2/3| \ge 0` `AA` `x`
`=> |x + 2/3| - 3/5 \ge -3/5` `AA` `x`
`=>` GTNN của M là `-3/5` khi `|x + 2/3| = 0`
`=> x + 2/3 = 0`
`=> x = -2/3`
c)
`N=-|7/4 - x| - 8`
Vì `|7/4 - x| \ge 0` `AA` `x`
`=> -|7/4 - x| \le 0` `AA` `x`
`=> -|7/4 - x| - 8 \le -8` `AA` `x`
`=>` GTLN của N là `-8` khi `|7/4 - x| = 0`
`=> 7/4 - x = 0`
`=> x = 7/4`
a)tìm GTNN của biểu thức :A=/x=7/+/x-3/
b)tìm giá trị nguyen của x để biểu thức B=7-x/x+1
tìm GTNN của biểu thức : a) M = | x + 15/19 | ; b) N = | x - 4/7 | - 1/2
a) vì \(\left|x+\frac{15}{19}\right|\ge0\text{ }\forall\text{ }x\)
\(\Rightarrow\)Mmin \(\Leftrightarrow\)M = 0 \(\Rightarrow\)x = \(\frac{-15}{19}\)
b) vì \(\left|x-\frac{4}{7}\right|\ge0\text{ }\forall\text{ }x\)
\(\Rightarrow\)\(\left|x-\frac{4}{7}\right|-\frac{1}{2}\ge\frac{-1}{2}\)
\(\Rightarrow\)Nmin \(\Leftrightarrow\)N = \(\frac{-1}{2}\)\(\Rightarrow\)\(x=\frac{4}{7}\)
tìm GTNN của biểu thức : a) M = | x + 15/19 | ; b) N = | x - 4/7 | - 1/2
a) vì | x + 15/19 | \(\ge\)0 \(\forall\)x
\(\Rightarrow\)Mmin \(\Leftrightarrow\)M = 0 \(\Rightarrow\)x = -15/19
b) vì | x - 4/7 | \(\ge\)0 \(\forall\)x
\(\Rightarrow\)|x - 4/7 | - 1/2 \(\ge\)-1/2
\(\Rightarrow\)Nmin \(\Leftrightarrow\)N = -1/2 \(\Rightarrow\)x = 4/7
Tìm GTNN của biểu thức A = 9 + |x - 3| + |x| + |x + 1|
Ta có \(\left|x-3\right|\ge0\)với mọi giá trị của x
\(\left|x\right|\ge0\)với mọi giá trị của x
\(\left|x+1\right|\ge0\)với mọi giá trị của x
=> \(\left|x-3\right|+\left|x\right|+\left|x+1\right|\ge0\)với mọi giá trị của x
=> \(\left|x-3\right|+\left|x\right|+\left|x+1\right|+9\ge9\)với mọi giá trị của x
Vậy GTNN của A là 9.
Cho 2 biểu thức: A = \(\dfrac{x+7}{3\sqrt{x}}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{9-x}\)với x>0, x≠9
Tìm GTNN của biểu thức P = A.B