Những câu hỏi liên quan
NC
Xem chi tiết
ST
31 tháng 7 2018 lúc 10:12

\(C=x^2-2xy+y^2+4y^2+4y+1+2=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu "=" xảy ra khi\(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=\frac{-1}{2}\end{cases}\Leftrightarrow}x=y=\frac{-1}{2}}\)

Bình luận (0)
HB
Xem chi tiết
LA
28 tháng 6 2016 lúc 10:11

a)Ta có: \(A=x^2+5y^2-2xy+4y+3\)\(\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)

                    = \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

(Do \(\left(x-y\right)^2\ge0;\left(2y+1\right)^2\ge0\))

Vậy min A=2. Dấu = khi x=y=-1/2

b) Đặt \(t=x^2-2x+1\)

=> \(B=\left(t-1\right)\left(t+1\right)\)=\(t^2-1\)=\(t^2+\left(-1\right)\ge-1\)

Do \(t^2\ge0\)

Vậy min B=-1. Dấu = khi t=0 hay \(x^2-2x+1=0\)

                                          => \(\left(x-1\right)^2=0\)<=> x=1

Bình luận (0)
LL
28 tháng 6 2016 lúc 10:01

trời ơi ghi cả 1 dãy 

oho

Bình luận (0)
HB
28 tháng 6 2016 lúc 10:05

sao vậy

Bình luận (2)
HK
Xem chi tiết
DN
1 tháng 8 2016 lúc 8:34

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 10 2023 lúc 19:20

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)

\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)

\(B=-4x^2-5y^2+8xy+10y+12\)

\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)

\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)

\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)

=>x=y=5

 

Bình luận (0)
NG
Xem chi tiết
NT
9 tháng 8 2023 lúc 8:35

\(E=2x^2+5y^2+x+4y+5\)

\(\Rightarrow E=2x^2+x+5y^2+4y+5\)

\(\Rightarrow E=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}-\dfrac{1}{16}\right)+5\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}-\dfrac{4}{25}\right)+5\)

\(\Rightarrow E=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)+5\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)+5-\dfrac{1}{8}-\dfrac{4}{5}\)

\(\Rightarrow E=2\left(x+\dfrac{1}{4}\right)^2+5\left(y+\dfrac{2}{5}\right)^2+\dfrac{163}{40}\)

mà \(\left\{{}\begin{matrix}2\left(x+\dfrac{1}{4}\right)^2\ge0,\forall x\\5\left(y+\dfrac{2}{5}\right)^2\ge0,\forall y\end{matrix}\right.\)

\(\Rightarrow E=2\left(x+\dfrac{1}{4}\right)^2+5\left(y+\dfrac{2}{5}\right)^2+\dfrac{163}{40}\ge\dfrac{163}{40}\)

\(\Rightarrow GTNN\left(E\right)=\dfrac{163}{40}\left(tạix=-\dfrac{1}{4};y=-\dfrac{2}{5}\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 7 2021 lúc 22:56

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

 

Bình luận (0)
NT
15 tháng 7 2021 lúc 22:57

c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Dấu '=' xảy ra khi x(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

d) Ta có: \(x^2+5y^2-2xy+4y+3\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)

Bình luận (0)
BB
Xem chi tiết
TT
25 tháng 12 2020 lúc 19:50

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

Bình luận (0)
XD
Xem chi tiết
DN
29 tháng 3 2021 lúc 15:29

có làm mới có ăn nha em

Bình luận (0)
H24
Xem chi tiết
TT
5 tháng 2 2020 lúc 21:44

\(D=x^2+4y^2-2xy-6y-10x+10y+32\)

\(=x^2-2.x\left(y+5\right)+\left(y+5\right)^2-\left(y+5\right)^2+4y^2+4y+32\)

\(=\left(x-y-5\right)^2-y^2-10y-25+4y^2+4y+32\)

\(=\left(x-y-5\right)^2+3y^2-6y+7\)

\(=\left(x-y-5\right)^2+3\left(y^2-2y+1\right)+4\)

\(=\left(x-y-5\right)^2+3\left(y-1\right)^2+4\)

Ta thấy : \(\left(x-y-5\right)^2+3\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow D\ge4\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-5=0\\y-1=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)

Vậy : min \(D=4\) tại \(x=6,y=1\)

Bình luận (0)
 Khách vãng lai đã xóa