Những câu hỏi liên quan
NM
Xem chi tiết
PB
Xem chi tiết
BH
Xem chi tiết
DL
25 tháng 4 2017 lúc 21:59

 Theo hằng đẳng thức 
\(a^2+b^2=\left(a+b\right)^2-2ab;\) 
\(c^2+d^2=\left(c+d\right)^2-2cd\)    

\(\Rightarrow\)
\(a^2+b^2\)\(a+b\) cùng chẵn, hoặc cùng lẻ; 
\(c^2+d^2\) và \(c+d\)cùng chẵn hoặc cùng lẻ. Kết hợp với 
\(a^2+b^2=c^2+d^2\Rightarrow a+b\) và \(c+d\) cùng chẵn hoặc cùng lẻ
Từ đó \(a+b+c+d\)chẵn, và vì \(a+b+c+d\ge4\)
 nên \(a+b+c+d\) là hợp số.

Bình luận (0)
TD
5 tháng 5 2017 lúc 7:36

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

Bình luận (1)

Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + ab + b2 = c2 + cd + d2. Chứng minh a + b + c + d là hợp số. 

Bình luận (0)
KM
Xem chi tiết
NL
9 tháng 1 2016 lúc 16:21

Theo hằng đẳng thức 
a^2+b^2=(a+b)^2-2ab; 
c^2+d^2=(c+d)^2-2cd. 
Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ; 
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với 
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn, 
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì 
a+b+c+d>=4 nên a+b+c+d là hợp số.

tick cho mk nha

Bình luận (0)
H24
Xem chi tiết
TL
Xem chi tiết
PG
Xem chi tiết
KN
5 tháng 3 2020 lúc 15:29

\(a^2+b^2=c^2+d^2\)

\(\Rightarrow a^2+b^2+c^2+d^2=2\left(c^2+d^2\right)⋮2\)

Mà \(a^2+b^2+c^2+d^2-a-b-c-d⋮2\)

Nên a + b + c + d chia hết cho 2

Bình luận (0)
 Khách vãng lai đã xóa
PG
5 tháng 3 2020 lúc 15:32

- Bạn ơii =) \(a^2-a=a\) ??? Sai sai à nha :))

Bình luận (0)
 Khách vãng lai đã xóa
PG
5 tháng 3 2020 lúc 15:52

- Mình làm thế này thì có đúng không, duyệt hộ mình nhé!

\(a^2+b^2=c^2+d^2\Rightarrow\sqrt{a^2}+\sqrt{b^2}=\sqrt{c^2}+\sqrt{d^2}\Rightarrow a+b=c+d\)

\(\Rightarrow a+b+c+d=2\left(a+b\right)⋮2\) 

=> a + b + c + d là một hợp số => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
Xem chi tiết
IN
5 tháng 3 2020 lúc 22:22

Xét:\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)\left(d^2+d\right)\)

\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)

Ta có: \(a.\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho 2

\( \implies\)\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho 2

Mà \(a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) chia hết cho 2

\( \implies\) \(a+b+c+d\) chia hết cho 2

Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết