cho bốn số nguyên dương a,b,c,d phân biệt thỏa mãn a^2+b^2=c^2+d^2=n .CMR n là hợp số
Cho các số nguyên dương a,b,c,d thỏa mãn ab=cd. CMR:
\(\left(a^{2019}+b^{2019}\right)^2+\left(c^{2019}-d^{2019}\right)^2\)
Cho a,b,c,d khác 0 thỏa mãn ab = cd
CMR: a2014 + b2014 + c2014 + d2014 là hợp số
1)cmr nếu x;y;z là số nguyên dương thỏa mãn :\(x^2+y^2=z^2\)thì xy chia hết cho 12
2)cho các số a,b,c,d thỏa mãn a+b=c+d và \(a^2+b^2=c^2+d^2\).cmr \(a^{2017}+b^{2017}=c^{2017}+d^{2017}\)
cho các số a,b,c,d thỏa mãn: \(a^2+b^2=c^2+d^2\)
\(A=a^2+b^2+c^2+d^2\)
a) chứng minh rằng \(A\) là hợp số
b)chứng minh rằng :\(ab+cd\)và \(ac+bd\) không thể đồng thời là số nguyên tố
Bài 1 cho a, b,c,d thuộc N* thỏa mãn a^2+b^2=C^2+d^2
chứng minh : a+b+c+d là hợp số
mọi người giúp mình với!
1. Cho a, b, c, d thỏa mãn: abcd=1.
Tính gía trị biểu thức:
M= \(\dfrac{a}{abc+ab+a+1}+\dfrac{b}{bcd+bc+b+1}+\dfrac{c}{cda+cd+1}+\dfrac{d}{dab+da+d+1}\)
2. Cho các số a, b, c, d thỏa mãn: 0 ≤a, b, c, d ≤1.
Tìm giá trị lớn nhất của biểu thức:
N\(=\dfrac{a}{bcd+1}+\dfrac{b}{cda+1}+\dfrac{c}{dab+1}+\dfrac{d}{abc+1}\)
3. Cho tam giác ABC nhọn có các đường cao AM, BN, CP cắt nhau tại H.
a) Chứng minh: \(AB.BP+AC.CN=BC^2\)
b) Cho B, C cố định A thay đổi. Tìm vị trí điểm A để: MH,MA đạt max ?
c) Gọi S,S1,S2,S3 lần luợt là diện tích các tam giác ABC, APN, BMP, CMN.
Chứng minh: \(S_1.S_2.S_3\) ≤ \(\dfrac{1}{64}S_3\)
cho bốn số nguyên dương a, b, c, d thỏa mãn ab=cd. chứng minh rằng a^5+b^5=c^5+d^5 là hợp số
Bài 1 : Cho a,b,c,d là các số nguyên thỏa mãn : a + b = c + d
CMR : M = \(a^2+b^2+c^2+d^2\) luôn là tổng của 3 SCP |
Bài 2 : Cho a , b , c là độ dài 3 cạnh 1 tam giác thỏa mãn
(a+b)(b+c)(c+a) = 8abc
Mong mọi người giúp mình , mình cần rất gấp .