Cho tứ giác AECF có AE = AF, góc AEC = 100 độ, CA là tia phân giác của ECF Tính AFC
mình đag gấp ạ
cho tam giác ABC có AB<AC gọi M là trung điểm của BC,từ M kẻ đường thẳng vuông góc với tia phân giác của góc BAC tại N và cắt tia AB tại E và cắt tia AC tại F chứng minh rằng
a)AE=AF
b)BE=CF
c)AE=AB+AC/2
mình đag cần gấp
Cho tam giác ABC( AB<AC). Gọi Ax là tia phân giác của góc A. Trên tia Ax lấy các đoạn AE=AB và AF=AC. So sánh góc AEB và góc AFC
Cho tứ giác ABCD có AC là tia phân giác góc A,BC=CD,AB<AD
a) Lấy điểm E trên cạnh AD sao cho AE=AB.Chứng minh rằng góc AEB= góc AEC
b) Chứng minh rằng góc B+ góc D=180 độ
Cho tam giác ABC vuông tại A ; AB = 30cm, AC = 40cm kẻ đường cao AH
a) Tính độ dài AH và HB
b) Tia phân giác của góc B cắt AC tại B. Tính độ dài AD và DC
(giúp mình vs ạ đag cần gấp)
Lời giải:
a)
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{30.40}{50}=24$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{30^2-24^2}=18$ (cm)
b)
Theo tính chất tia phân giác:
$\frac{AD}{DC}=\frac{AB}{BC}=\frac{30}{50}=\frac{3}{5}$
$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$
$\Leftrightarrow \frac{AD}{40}=\frac{3}{8}$
$\Rightarrow AD=15$ (cm)
$DC=AC-AD=40-15=25$ (cm)
1) Cho tứ giác lồi ABCD có góc B + D= 180°, CB= CD. Chứng minh AC là tia phân giác góc BAD
2) Tứ giác ABCD có AC là tia phân giác góc A, BC= CD, AB<AD
a) Lấy điểm E trên cạnh AD sao cho AE= AB. Chứng minh rằng góc ABC= AEC
b) Chứng minh góc B+ D= 180°
Cho tam giác ABC có góc A=30 độ, góc B=40 độ. Tia phân giác của góc ngoài tại đỉnh A của tam giác ABC cắt BC tại E. Chứng minh rằng: AB+AC=BE ( Gợi ý: Trên tia đối của tia AB lấy điểm F sao cho AF=AC)
Ai đi ngang có lòng giúp mình gấp với ạ TT.TT
cho tam giac ABC góc A=80 độ điểm D nằm giữa BC sao cho góc BAD = 20 độ AE là tia phân giác của góc BAC tính góc DAE, EAC.nếu biết tổng các góc trong của một tam giác là 180 độ và góc B=65 độ hãy tính các góc BDA, ADE, AED, AEC, ACE
1)Cho hình thang ABCD có góc A = 30 độ, góc C = 120 độ. Tính góc B, góc D trong các trường hợp sau:
a) TH1: AB//CD
b)TH2: AD//BC
2)Cho tứ giác ABCD có DB là tia phân giác của góc D. DC=CB. Cm tứ giác ABCD là hình thang
3) Cho tam giác ABC cân tại A. BD, CE là các đường cao. Cm:
a) BE=CD
BD=CE
b) AD=AE
c) tứ giác BEDC là hình thang
M.n giúp mình làm 3 bài này vs ạ :)) Mình c.ơn :)))
b1 a) goi I la giao diem cua AD va BC
vi AB//DC => goc IDC = goc DAB (2 goc dong vi)
ma goc A =30 => goc IDC =30
lai co goc IDC + goc ADC =180 ( I,D,A thang hang)
30+ goc ADC =180 => goc ADC=150
vi AB//DC => goc ICD = goc CBA (2 goc dong vi)
có goc ICD+ goc DCB =180 (I,C,B thang hang )
goc ICD+ 120=180 => goc ICD = 60 => goc ABC=60
còn ý b) bạn làm tương tự nhé
b2
vi DC =BC (gt) => tam giac DCB can tai C => goc CDB = goc DBC (1)
vi DB la phan giac cua goc ADC => g ADB =g BDC (2)
tu (1,2) => g ADB = g DBC
ma 2 goc nay o vi tri so le trong
=> AD// BC => ABCD la hinh thang
bài 2:
Ta có: DC = BC
=> Góc CDB = góc CBD ( quan hệ giữa góc và cạnh đối diện)
Mà góc ADB = góc CDB ( gt)
=> Góc ADB = góc CBD
Mà 2 góc này ở vị trí so le trong => AB //CD
=> ABCD là hình thang
Bài 3:
a) xét tam giác BEC và tam giác CDB có:
Góc CEB = góc BDC = 90 độ
BC là cạnh chung
Góc B = góc C ( tam giác ABC cân tại A)
=> Tam giác BEC = tam giác CDB ( ch-cgv)
=> BE = DC ( 2 cạnh tương ứng)
=> BD = CE ( 2 cạnh tương ứng )
b) Ta có: AE + EB = AB
AD + DC = AC
Mà EB = DC ( CMT)
AB = AC ( tam giác ABC cân tại A)
=> AE = AD
c) Ta có: AE = AD => tam giác AED cân tại A
=> góc AED = góc ADE = \(\frac{180-A}{2}\)(1)
Ta có tam giác ABC cân tại A
=> góc B = góc C =\(\frac{180-A}{2}\) (2)
Từ (1) và(2) => góc AED = góc B
Mà 2 góc này ở vị trí đồng vị=> ED//BC=> BEDC là hình thang