Những câu hỏi liên quan
PG
Xem chi tiết
IA
17 tháng 7 2021 lúc 15:31

\(5\sqrt{2x^3+16}=2\left(x^2+8\right)\left(x>-2\right)\)

\(\Leftrightarrow20\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2+8\right)\)

\(\Leftrightarrow2\left(x^2+8\right)-20\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=0\)

\(\Leftrightarrow x^2+8-10\sqrt{x+2}\sqrt{x^2-2x+4}=0\)

\(\Leftrightarrow x^2-2x+4+2x+4-10\sqrt{x+2}\sqrt{x^2-2x+4}=0\)

Đặt a = \(\sqrt{x^2-2x+4}\left(a>0\right)\)

      b = \(\sqrt{x+2}\left(b\ge0\right)\)

=> pt có dạng:

\(a^2-10ab+b^2=0\)

bạn phân tích rồi làm tiếp nhá

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
H24
11 tháng 1 2023 lúc 22:53

\(a.\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}-2=-1\\\dfrac{4}{x}+\dfrac{3}{y}-2=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a-b-2=-1\\4a+3b-2=5\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{y}=b\))

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{10}{7}\\b=\dfrac{3}{7}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{10}{7}\Rightarrow x=\dfrac{7}{10}\\\dfrac{1}{y}=\dfrac{3}{7}\Rightarrow y=\dfrac{7}{3}\end{matrix}\right.\)

\(b.\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{5}{\left(x+y\right)}=2\\\dfrac{3}{x}+\dfrac{1}{\left(x+y\right)}=\dfrac{17}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2a+5b=2\\3a+b=\dfrac{17}{10}\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{x+y}=b\))

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{5}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\\\dfrac{1}{x+y}=\dfrac{1}{5}\Rightarrow y=3\end{matrix}\right.\)

\(c.\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{1}{y+1}=7\\\dfrac{5}{x-1}-\dfrac{2}{y+1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=7\\5a-2b=4\end{matrix}\right.\) (với \(\dfrac{1}{x-1}=a-\dfrac{1}{y+1}=b\))

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}=2\Rightarrow x=\dfrac{3}{2}\\\dfrac{1}{y+1}=3\Rightarrow y=-\dfrac{2}{3}\end{matrix}\right.\)

\(d.\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{y-1}}=1\\\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{y-1}}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a+b=2\end{matrix}\right.\) (với \(\dfrac{1}{\sqrt{x-1}}=a-\dfrac{1}{\sqrt{y-1}}=b\))

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}=1\Rightarrow x=2\\\dfrac{1}{\sqrt{y-1}}=1\Rightarrow y=2\end{matrix}\right.\)

Bình luận (0)
NA
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
AH
1 tháng 11 2019 lúc 0:22

Lời giải:

ĐKXĐ: $x\geq 2$ hoặc $x\leq 1$

Đặt $\sqrt{x^2-3x+2}=a(a\geq 0)\Rightarrow x^2-3x-4=a^2-6$

Phương trình đã cho trở thành:

\(a=a^2-6\)

\(\Leftrightarrow a^2-a-6=0\Leftrightarrow a(a-3)+2(a-3)=0\)

\(\Leftrightarrow (a-3)(a+2)=0\Rightarrow a=3\) (do $a\geq 0$)

\(\Leftrightarrow \sqrt{x^2-3x+2}=3\)

\(\Rightarrow x^2-3x+2=9\)

\(\Leftrightarrow x^2-3x-7=0\Rightarrow x=\frac{3\pm \sqrt{37}}{2}\) (đều thỏa mãn)

Vậy.........

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LC
5 tháng 8 2021 lúc 1:07

\(x^2+6x-3=4x\sqrt{2x-1}\left(1\right)\)      ĐK: \(x\ge\frac{1}{2}\)

Đặt \(\sqrt{2x-1}=a\ge0\)

\(\Rightarrow6x-3=3a^2\)

=> (1) <=> x^2 +3a^2 = 4ax

<=> x^2 -4ax +3a^2 =0

<=> x^2 -ax - 3ax +  3a^2 =0

<=> x(x-a) -3a(x-a) =0

<=> (x-a) ( x-3a ) =0

\(\Leftrightarrow\orbr{\begin{cases}x=a\\x=3a\end{cases}}\)

TH1: x=a

\(\Rightarrow x=\sqrt{2x-1}\)\(\left(x\ge0\right)\)

\(\Leftrightarrow x^2=2x-1\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

<=> x=1 (tm)

TH2: x= 3a

\(\Rightarrow x=3\sqrt{2x-1}\left(x\ge0\right)\)

\(\Leftrightarrow x^2=18x-9\)

\(\Leftrightarrow x^2-18x+9=0\)

\(\Delta=288\)

=> pt có 2 nghiệm pb \(\orbr{\begin{cases}x=\frac{18+12\sqrt{2}}{2}=9+6\sqrt{2}\left(tm\right)\\x=\frac{18-12\sqrt{2}}{2}=9-6\sqrt{2}\left(tm\right)\end{cases}}\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
SN
Xem chi tiết
NT
15 tháng 8 2023 lúc 11:47

a: \(3+\sqrt{2x-3}=x\)

=>\(\sqrt{2x-3}=x-3\)

=>x>=3 và 2x-3=(x-3)^2

=>x>=3 và x^2-6x+9=2x-3

=>x>=3 và x^2-8x+12=0

=>x>=3 và (x-2)(x-6)=0

=>x>=3 và \(x\in\left\{2;6\right\}\)

=>x=6

b: \(\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)-2x=-4\)

=>\(2x-3\sqrt{x}+2\sqrt{x}-3-2x=-4\)

=>\(-\sqrt{x}-3=-4\)

=>\(-\sqrt{x}=-1\)

=>căn x=1

=>x=1(nhận)

c: \(\sqrt{2x+1}-x+1=0\)

=>\(\sqrt{2x+1}=x-1\)

=>x>=1 và (x-1)^2=2x+1

=>x>=1 và x^2-2x+1=2x+1

=>x>=1 và x^2-4x=0

=>x(x-4)=0 và x>=1

=>x=4

Bình luận (0)
PX
Xem chi tiết
NC
15 tháng 11 2019 lúc 10:22

Em trục căn thức:

\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)

<=> \(\frac{-3x+3}{\sqrt{x+3}+2\sqrt{x}}=\frac{-x+1}{\sqrt{2x+2}+\sqrt{3x+1}}\)

=> nhân tử chung là -x + 1 . Tự làm tiếp nhé!

Bình luận (0)
 Khách vãng lai đã xóa
PN
28 tháng 12 2020 lúc 20:02

làm như cô thì vẫn cần phải đánh giá rất khó chịu nhé

\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\left(ĐKXĐ:x\ge0\right)\)

\(< =>\sqrt{x+3}-\sqrt{2x+2}+\sqrt{3x+1}-2\sqrt{x}=0\)

\(< =>\frac{\sqrt{x+3}^2-\sqrt{2x+2}^2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{\sqrt{3x+1}^2-4\sqrt{x}^2}{\sqrt{3x+1}+2\sqrt{x}}=0\)

\(< =>\frac{x+3-2x-2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{3x+1-4x}{\sqrt{3x+1}+2\sqrt{x}}=0\)

\(< =>\frac{1-x}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1-x}{\sqrt{3x+1}+2\sqrt{x}}=0\)

\(< =>\left(1-x\right)\left(\frac{1}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1}{\sqrt{3x+1}+2\sqrt{x}}\right)=0< =>x=1\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
TT
13 tháng 3 2022 lúc 21:48

undefined

Bình luận (0)