cho a^3+b^3+c^3=3abc=21 tính a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)
cho a,b,c khác 0 thỏa mãn:a+b-c=6.Tính C=a^3+b^3-c^3+3abc/(a-b)^2+(b+c)^2+(c+a)^2
a+b+c=0.cmr a^3+b^3+c^3=3abc
em chứng minh thế này được không các thầy (cô) giáo
a+b+c=0
=>a+b=-c
=>a+b=3abc/-3ab
=>(a+b).(-3ab)=3abc
=>(a+b).(a^2-ab+b^2-a^2-2ab-b^2)=3abc
=>(a+b)(a^2-ab+b^2)-(a+b).(a^2+2ab+b^2)=3abc
=>a^3+b^3-(a+b)^3=3abc
mà a+b=-c=> a^3+b^3-(-c)^3=3abc
=>a^3+b^3+c^3=3abc
Được bạn nhé :"))))
Ủng hộ mình = cách theo dõi mình nha
a+b+c=0
\(\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+b+c\right)+3bc\left(a+b+c\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
mk ko chắc cách bn đúng nhưng cách của mk là phù hợp nhất đó
Không nên chứng minh như thế này nhé. Ở ngay phần \(a+b=\frac{3abc}{-3ab}\) đã sai sót vì bạn không tính đến trường hợp \(a=0\) hoặc $b=0$ đã thực hiện phép chia như vậy.
Sử dụng hằng đẳng thức: \((a+b)^3=a^3+b^3+3ab(a+b)\) ta có:
\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3\)
Vì \(a+b+c=0\Rightarrow a+b=-c\). Thay vào biểu thức trên:
\((a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc\)
Do đó:
\(a^3+b^3+c^3=3abc\)
Cho a-b+c=-4. Tính B = \(\dfrac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(B=\dfrac{a^3+c^3+3ac\left(a+c\right)-b^3-3ac\left(a+c\right)+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2\right]-3ac\left(a+c-b\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{-2\left(2a^2+2b^2+2c^2+2ab+2bc-2ca\right)}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{-2\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2\right]}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}=-2\)
Cho a,b,c khác 0 và phân biệt thỏa mãn a^3+b^3+c^3=3abc
Tính M=ab^2/a^2+b^2-c^2 +bc^2/b^2+c^2-a^2 + ca^2/c^2+a^2-b^2
Ta có: a3+b3+c3=3abc
<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0
<=> (a+b+c)(2a2+2b2+2c2-2ab-2bc-2ca)=0
<=> (a+b+c)[(a-b)2+(b-c)2+(c-a)2 ] = 0
<=> \(\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
Vì a,b,c phân biệt nên a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(c+a\right)\\c=-\left(a+b\right)\end{cases}}\)(*)
Lại có: \(M=\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}\)
Thay (*) vào M ta được:
\(M=\frac{-\left(b+c\right)b^2}{\left(b+c\right)^2+\left(b+c\right)\left(b-c\right)}+\frac{-\left(c+a\right)c^2}{\left(c+a\right)^2+\left(c+a\right)\left(c-a\right)}+\frac{-\left(a+b\right)a^2}{\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)}\)
\(=\frac{-\left(b+c\right)b^2}{\left(b+c\right)\left(b+c+b-c\right)}+\frac{-\left(c+a\right)c^2}{\left(c+a\right)\left(c+a+c-a\right)}+\frac{-\left(a+b\right)a^2}{\left(a+b\right)\left(a+b+a-b\right)}\)
\(=\frac{-\left(b+c\right)b^2}{2b\left(b+c\right)}+\frac{-\left(c+a\right)c^2}{2c\left(c+a\right)}+\frac{-\left(a+b\right)a^2}{2a\left(a+b\right)}\)
\(=\frac{-b}{2}-\frac{c}{2}-\frac{a}{2}=\frac{-\left(b+c+a\right)}{2}\)
Mà a+b+c=0
=> M=0
Vậy M=0
Sửa lại dòng (*)
Vì a,b,c phân nên a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}\left(\text{*}\right)}\)
Cho a^3 + b^3 + c^3 = 3abc và a+b+c khác 0 . Tính giá trị biểu thức A=(a^2+2*b^2+6*c^2)/(a+b+c)^2 + 2015
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Mà \(a+b+c\ne0\left(gt\right)\)
\(\Leftrightarrow a=b=c\)
Do đó:
\(A=\frac{a^2+2b^2+6c^2}{\left(a+b+c\right)^2}+2015=\frac{a^2+2a^2+6c^2}{\left(a+a+a\right)^2}+2015=\frac{9a^2}{9a^2}+2015=1+2015=2016\)
1. Cho a2 - b2 - c2 =3abc
Tính H = \(\left(1-\frac{a}{b}\right)\left(1-\frac{b}{c}\right)\left(1-\frac{c}{a}\right)\)
2. Cho a - b + c = - 4
Tính B = \(\frac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
Cho a+b+c\(a^3+b^3+c^3=3abc\) áp dụng tính B=\(\frac{\left(a^2-b^2\right)^3+\left(b^2-c^2\right)^3+\left(c^2-a^2\right)^3}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
Cho a^3 + b^3 +c^3 =3abc , a + b+ c\(\ne\)0
Tính B=\(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
Ta có: a3 + b3 + c3 = 3abc
<=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0
<=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
<=> (a + b + c)[(a + b)2 - (a + b)c + c2) - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\left(loại\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<= > (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)<=> a = b = c
Khi đó: B = \(\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
ta có a3+b3+c3=3abc <=> a3+b3+c3-3abc=0
<=> (a+b)3-3ab(a+b)+c3-3abc=0
<=> (a+b+c)3-3(a+b)c(a+b+c)-3ab(a+b+c)=0
<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0
<=> a2+b2+c2-ab-bc-ca=0 (vì a+b+c=0)
<=> (a-b)2+(b-c)2+(c-a)2=0
<=> a=b=c
khi đó \(B=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)
a. Cho : a - b - c = 2
Tính : (a3 - b3 - c3 - 3abc)/(a + b)2 + (b + c)2 + (c + a)2
b. Cho : a + b - c = 0
CMR : a3 + b3 - c3 = -3abc
c. Cho : 1/x + 1/y + 1/z = 0
Tính : S = xy/z2 + xz/x2 + xz/y2