Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
9D
Xem chi tiết
H24
27 tháng 2 2022 lúc 19:37

1, \(\Delta=\left(-11\right)^2-4.1.38=121-152=-31< 0\)

\(\Rightarrow\) pt vô nghiệm

2, \(\Delta=71^2-4.6.175=5041-4200=841\)

\(x_1=\dfrac{-71+\sqrt{841}}{2.6}=\dfrac{-71+29}{12}=\dfrac{-42}{12}=-\dfrac{7}{2}\)

\(x_2=\dfrac{-71-\sqrt{841}}{2.6}=\dfrac{-71-29}{12}=\dfrac{-10}{12}=-\dfrac{25}{3}\)

3, \(\Delta=\left(-3\right)^2-5.27=9-135=-126< 0\)

⇒ pt vô nghiệm

4, \(\Delta=15^2-\left(-30\right)\left(-7,5\right)=225-225=0\)

\(\Rightarrow x_1=x_2=\dfrac{-30}{2.\left(-30\right)}=\dfrac{1}{2}\)

5, \(\Delta'=\left(-8\right)^2-4.17=64-68=-4\)

⇒ pt vô nghiệm

6, \(\Delta=4^2-4.1.\left(-12\right)=16+48=64\)

\(x_1=\dfrac{-4+\sqrt{64}}{2.1}=\dfrac{-4+8}{2}=\dfrac{4}{2}=2\)

\(x_2=\dfrac{-4-\sqrt{64}}{2.1}=\dfrac{-4-8}{2}=\dfrac{-12}{2}=-6\)

Bình luận (1)
HU
Xem chi tiết
HN
Xem chi tiết
PH
Xem chi tiết
DH
16 tháng 1 2023 lúc 0:22

Ta có:

 \(16x^4+4x^2+1=16x^4+8x^2+1-4x^2=\left(4x^2+1\right)^2-4x^2=\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)\)

\(4x^2-6x+1=2\left(4x^2-2x+1\right)-\left(4x^2+2x+1\right)\)

Chia hai vế phương trình ban đầu cho \(4x^2+2x+1\) ta được

\(2\dfrac{4x^2-2x+1}{4x^2+2x+1}-1=\dfrac{-\sqrt{3}}{3}\sqrt{\dfrac{4x^2-2x+1}{4x^2+2x+1}}\)

Đặt \(y=\sqrt{\dfrac{4x^2-2x+1}{4x^2+2x+1}}>0\), phương trình trên tương đương với

\(2y^2-1=\dfrac{-\sqrt{3}}{3}y\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{\sqrt{3}}{3}\left(tm\right)\\y=\dfrac{-\sqrt{3}}{2}\left(l\right)\end{matrix}\right.\)

Với \(y=\dfrac{\sqrt{3}}{3}\) ta có: 

\(\dfrac{4x^2-2x+1}{4x^2+2x+1}=\dfrac{1}{3}\Leftrightarrow3\left(4x^2-2x+1\right)-\left(4x^2+2x+1\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\).

 

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 7 2018 lúc 16:02

Đặt t = 4 x (t > 0), ta có hệ bất phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bình luận (0)
H24
Xem chi tiết
NK
Xem chi tiết
TD
7 tháng 5 2020 lúc 18:47

đặt x2 + 16x + 60 = t thì PT đã cho trở thành :

t ( t + x ) - 6x2 = 0 \(\Leftrightarrow\)t2 + xt - 6x2 = 0

\(\Leftrightarrow\)( t - 2x ) ( t + 3x ) = 0 \(\Leftrightarrow\)\(\orbr{\begin{cases}t=2x\\t=-3x\end{cases}}\)

+) t = 2x thì x2 + 16x + 60 = 2x \(\Leftrightarrow\)x2 + 14x +  60 = 0 ( vô nghiệm )

+) t = -3x thì x2 + 16x + 60 = -3x \(\Leftrightarrow\)x2 + 19x + 60 = 0 

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-4\\x=-15\end{cases}}\)

Vậy ....

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
NA
17 tháng 7 2016 lúc 13:39

   (ĐK : x>= 3/2) 

nhận 2 vế của pt với \(\sqrt{2}tađược\)

\(\sqrt{2.\left(2x-2\right)}-\sqrt{2.\left(6x-9\right)}=\sqrt{2}.\left(16x^2-48x+35\right)\)

<=> \(\left(\sqrt{4x-4}-\sqrt{3}\right)-\left(\sqrt{12x-18}-\sqrt{3}\right)=\sqrt{2}.\left(4x-7\right).\left(4x-5\right)\)

<=> \(\left(\frac{4x-7}{\sqrt{4x-4}+\sqrt{3}}\right)-\left(\frac{12x-21}{\sqrt{12x-18}+\sqrt{3}}\right)=\sqrt{2}.\left(4x-7\right).\left(4x-5\right)\)

<=>\(\left(4x-7\right).\left(\frac{1}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-5\right)\right)=0\) 

<=> (4x-7) .g(x) = 0 

<=> x = 7/4(tm) hoặc g(x)= 0 

+) với g(x) = 0  <=> \(\left(\frac{1}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-5\right)\right)=0\) <=> \(\left(\frac{1}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-6\right)-\sqrt{2}\right)=0\)

<=>\(\left(\frac{1-\sqrt{2}.\sqrt{4x-4}-\sqrt{2}.\sqrt{3}}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-6\right)\right)=0\)  vô nghiện vì VT < 0 với mọi x >= 2/3 ...

VẬY X = 7/4  ... nếu đúng thì like nhé !!!

Bình luận (0)
LP
Xem chi tiết
MY
10 tháng 5 2022 lúc 20:08

\(x^6-6x^5+15x^4-20x^3+15x^2-6x+1=0\)

\(\Leftrightarrow x^6-x^5-5x^5+5x^4+10x^4-10x^3-10x^3+10x^2+5x^2-5x-x+1=0\)

\(\Leftrightarrow x^5\left(x-1\right)-5x^4\left(x-1\right)+10x^3\left(x-1\right)-10x^2\left(x-1\right)+5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^5-5x^4+10x^3-10x^2+5x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^5-x^4-4x^4+4x^3+6x^3-6x^2-4x^2+4x+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^4\left(x-1\right)-4x^3\left(x-1\right)+6x^2\left(x-1\right)-4x\left(x-1\right)+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^4-4x^3+6x^2-4x+1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^4-x^3-3x^3+3x^2+3x^2-3x-x+1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^3\left[x^3-3x^2+3x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^3\left[x^3-x^2-2x^2+2x+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^4\left[x^2-2x+1\right]=0\Leftrightarrow\left(x-1\right)^6=0\Leftrightarrow x=1\)

Bình luận (0)