c/m 1/4.7+1/7.10+1/10.13+...+1/604.607 < 1/12
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh rằng c= 1/4.7+1/ 7.10+ 1/10.13+...+1/37.40 < 1/3
Ta có: \(c=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{37\cdot40}\)
\(\Leftrightarrow3c=3\left(\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+...+\frac{1}{37\cdot40}\right)\)
\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)
Mà \(\frac{3}{4\cdot7}=\frac{1}{4}-\frac{1}{7}\)
\(\frac{3}{7\cdot10}=\frac{1}{7}-\frac{1}{10}\)
...
\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)
\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{40}\)
Ta thấy ngoại trừ hai phân số đầu tiên và cuối cùng thì tất cả các phân số còn lại đều có 1 phân số có cùng giá trị tuyệt đối nhưng ngược dấu đứng cạnh, mà tổng hai số ngược dấu bằng 0 nên ta nhóm các phân số ngược dấu thì được:
\(3c=\frac{1}{4}-\frac{1}{40}\Leftrightarrow c=\left(\frac{1}{4}-\frac{1}{40}\right)\cdot\frac{1}{3}\)
\(=\frac{9}{40}\cdot\frac{1}{3}=\frac{3}{40}=\frac{9}{120}< \frac{40}{120}\)
Mà \(\frac{40}{120}=\frac{1}{3}\Rightarrow c< \frac{1}{3}\)
1) 1/6+1/12+1/30+1/42+1/56+1/72
2) 3/1.4+3/4.7+3/7.10+3/10.13+3/13.16
Nguyễn Huy Thắng giải sai rồi ,thế này mới đúng nè
1,\(\frac{1}{6}+\frac{1}{12}+.........+\frac{1}{72}\)
=\(\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{8.9}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{8}-\frac{1}{9}\)
=\(\frac{1}{2}-\frac{1}{9}\)
=\(\frac{7}{18}\)
2,\(\frac{3}{1.4}+\frac{3}{4.7}+..........+\frac{3}{13.16}\)
=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{13}-\frac{1}{16}\)
=\(1-\frac{1}{16}\)
=\(\frac{15}{16}\)
2)đặt B= 3/1.4+3/4.7+3/7.10+3/10.13+3/13.16
\(B=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{16}\right)\)
\(B=3-\frac{15}{16}\)
\(B=\frac{45}{16}\)
1)
1/6+1/12+1/30+1/56+1/72
= 1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8
= 1/2-1/3+1/3-1/4+...+1/7-1/8
= 1/2-1/8
= 3/8
2)
3/1.4+3/4.7+3/7.10+3/10.13+3/13.16
= 1-1/4+1/4-1/7+..+1/13-1/16
= 1-1/16
= 15/16
mk nhé đầu tiên đó
ta nhân 3 cả hai vế, được :
\(\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{102.105}\right)x=3\)
hay
\(\left(\frac{4-1}{1.3}+\frac{7-4}{4.7}+...+\frac{105-102}{102.105}\right)x=3\) \(\Leftrightarrow\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+..+\frac{1}{102}-\frac{1}{105}\right)x=3\)
\(\Leftrightarrow\left(1-\frac{1}{105}\right)x=3\Leftrightarrow\frac{104}{105}.x=3\Leftrightarrow x=\frac{315}{104}\)
A= \(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+\(\dfrac{1}{10.13}\)+....+\(\dfrac{1}{25.28}\)
\(A=\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{25\cdot28}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{6}{28}=\dfrac{2}{28}=\dfrac{1}{14}\)
`3A = 3/(4.7) + 3/(7.10) + .. + 3/(25.28)`
`3A = 1/4 - 1/7 + 1/7 - 1/10 +... + 1/25 - 1/28`
`3A = 3/14`
`A = 1/14.`
tính
A=1/12+1/20+1/30+1/42+1/56+1/72
B=2/1.4+2/4.7+2/7.10+2/10.13+2/13.16
a/ \(A=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
=> \(A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
=> \(A=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
=> \(A=\frac{1}{3}-\frac{1}{9}=\frac{2}{9}\)
b/ \(B=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}\)
=> \(B=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\right)\)
=> \(B=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
=> \(B=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{16}\right)=\frac{2}{3}.\frac{15}{16}=\frac{5}{8}\)
\(A=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(A=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(A=\frac{1}{3}-\frac{1}{9}\)
\(A=\frac{3}{9}-\frac{1}{9}\)
\(A=\frac{2}{9}\)
\(B=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}\)
\(B=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\right)\)
\(B=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(B=\frac{2}{3}\left(1-\frac{1}{16}\right)\)
\(B=\frac{2}{3}.\frac{15}{16}\)
\(B=\frac{5}{8}\)
chứng tỏ rằng 1/4.7+1/7.10+1/10.13+...+1/37.40<1/3
\(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+.....+\frac{1}{73.76}\)
A=\(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{73.76}\)
3A=3(\(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{73.76}\))
3A=\(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\)
3A=\(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}+\frac{1}{76}\)
3A=\(\frac{1}{4}-\frac{1}{76}\)
3A=\(\frac{9}{38}\)
A=\(\frac{9}{38}\):3
A=\(\frac{3}{38}\)
đặt A=1/4.7+1/7.10+...+1/73.76
3A=1/4-1/7+1/7-1/10+...+1/ 73 -1/ 76
\(A=\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{73.76}\)
\(3A=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\)
\(3A=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\)
\(3A=\frac{1}{4}-\frac{1}{76}\)
\(3A=\frac{9}{38}\)
\(A=\frac{3}{38}\)
Tìm n
1/4.7 + 1/7.10 + 1 /10.13 +....+ 1/n = 83/1044
1/4.7+1/7.10+1/10.13+...+1/73/76
giúp tôi với nhanh nhá các bạn
nhớ k nha
1/4.7+1/7.10+...+1/73.76=1/3.(3/4.7+3/7.10+..+3/73.76)
=1/3.(1/4-1/7+1/7-1/10+1/10-......+1/73-1/76)
=1/3.(1/4-1/76)
=1/3.9/38=3/38
nhớ k nha
\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{73}-\frac{1}{76}\)
\(=\frac{1}{4}-\frac{1}{76}\)
\(=\frac{9}{38}\)