cm/r
4a\(^2\)-4a+2>0\(\forall\) x
CHỨNG MINH :
a/ \(x^2-8x+20>0\forall x\)
b/ \(6x-x^2-19< 0\forall x\)
c/ \(3x^2+y^2-2xy+4x+20>0\forall x,y\)
d/ \(5x^2+10y^2-6xy-4x-2y+3>0\forall x,y\)
AI GIÚP MK VS Ạ AI NHANH MK SẼ VOTE NHA
a: Ta có: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(-x^2+6x-19\)
\(=-\left(x^2-6x+19\right)\)
\(=-\left(x^2-6x+9+10\right)\)
\(=-\left(x-3\right)^2-10< 0\forall x\)
b1 cm
\(a^2+b^2+1\ge ab+a+b\) \(\forall a;b\)
b2 cm bđt
\(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c-1\right)\)
cm \(\frac{x^2}{y}+\frac{y^2}{x}\ge x+y;\forall x,y>0\)
bài 1)
ta có \(\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)
=> \(a^2+b^2+1\ge ab+a+b\)
ý 1 mk làm òi còn 2 ý kia chưa làm thui
bài 3 nhé
ta có với x,y >0 ÁP dụng bđt cô si ta có
\(x^3+x^3+y^3\ge3x^2y;y^3+y^3+x^3\ge3y^2x\)
cộng tưngf vế và rút gọn thì ta có \(x^3+y^3\ge x^2y+xy^2=xy\left(x+y\right)\)
\(\Rightarrow\frac{x^3+y^3}{xy}\ge x+y\)
\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\)
Cho hai số thực x y, thỏa mãn \(x^2+y^2-2x-4y-4=0\)
cm: \(-2\le x\le4\left(\forall y\in R\right)\)
tìm Min \(S=3x+4y\)
\(x^2+y^2-2x-4y-4=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2-9=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=9=0^2+3^2=0^2+\left(-3\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y-2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=0\\y-2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\y-2=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow-2\le x\le4\left(y\in R\right)\)
Ta có \(S=3x+4y\)
Mà \(x\ge-2;y\ge-1\Leftrightarrow S\ge3\cdot\left(-2\right)+4\cdot\left(-1\right)=-6-4=-10\)
Vậy GTNN của S là \(-10\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
Lời giải:
ĐKĐB $\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)-9=0$
$\Leftrightarrow (x-1)^2+(y-2)^2-9=0$
$\Rightarrow (x-1)^2=9-(y-2)^2\leq 9$
$\Rightarrow -3\leq x-1\leq 3$
$\Leftrightarrow -2\leq x\leq 4$
-------------
Đặt $x-1=a; y-2=b$ thì bài toán trở thành:
Cho $a,b$ thực thỏa mãn $a^2+b^2=9$
Tìm min $S=3a+4b+11$
Áp dụng BĐT Bunhiacopxky:
$(3a+4b)^2\leq (a^2+b^2)(3^2+4^2)=9.25$
$\Rightarrow -15\leq 3a+4b\leq 15$
$\Rightarrow 3a+4b\geq -15$
$\Rightarrow S=3a+4b+11\geq -4$
Vậy $S_{\min}=-4$ khi $x=\frac{-4}{5}; y=\frac{-1}{5}$
Chứng minh BĐT:
a) x2 + x + 1 > 0 ∀ x
b) x - \(\sqrt{x}\) + 1 > 0 ∀ x
c) x2 - xy + y2 > 0 ∀ xy , x; y ≠0
d) x2 + x\(\sqrt{2}\) + 1 > 0 ∀ x
e) ( x + y + z )2 ≤ 3( x2 + y2 + z2) ∀ xyz
a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
b: \(x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
c: \(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)
\(Cm:\dfrac{1}{\sqrt{x^4-x^2+4}+2x}+\dfrac{1}{\sqrt{x^4+20x^2+4}+5x}=0,vo.nghiem\forall x\in R\)
Cho f(x)=2x+1. Khẳng định nào sau đây là sai:
A.f(x)>0,∀x>\(\dfrac{-1}{2}\)
B.f(x)>0,∀x<\(\dfrac{1}{2}\)
C.f(x)>0,∀x>2
D.f(x)>0,∀x>0
câu B nhé , vẽ hàm số là sẽ thấy
CM \(x^2-x+\frac{1}{2}>0\)\(\forall x\)
Hìhì giúp mk với
help meee!!
= x^2 - 2.1/2x + 1/4 - 1/4 +1/2
=(x-1/2)^2 + 1/4 >o với mọi x
Bài 1 : cm
a) \(^{x^2}\)-2xy +\(^{y^2}\)+ 1 > 0 \(\forall\)xy
b) x-\(x^2\)-1<0 \(\forall\)x
c) 9\(x^2\)+12x+10 >0
d) 3\(^{x^2}\)-x+ 1>0
Giúp mk ,mk cần gấp
ai nhanh mk tick cho !!
a)\(x^2-2xy+y^2+1=\left(x+y\right)^2+1\ge1>0\)
b)\(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)
c)\(9x^2+12x+10=\left(9x^2+12x+4\right)+6=\left(3x+2\right)^2+6\ge6>0\)
d)\(3x^2-x+1=2x^2+\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=2x^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0`\)
chứng minh rằng
a) 9x2-6x+2>0 \(\forall x \)
b)x2+x+1>0 \(\forall x \)
c) 25x2-20x+7>0 \(\forall x \)
d)9x2-6xy+2y2+1>0 \(\forall x ,y\)
e) x2-xy+y2 \(\ge0\forall x,y\)
\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)
\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)
\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)
\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)
\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)
Cách khác câu e:
\(x^2-xy+y^2=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\forall xy\) (đpcm)