Những câu hỏi liên quan
DV
Xem chi tiết
NT
27 tháng 9 2021 lúc 23:31

a: Ta có: \(x^2-8x+20\)

\(=x^2-8x+16+4\)

\(=\left(x-4\right)^2+4>0\forall x\)

b: Ta có: \(-x^2+6x-19\)

\(=-\left(x^2-6x+19\right)\)

\(=-\left(x^2-6x+9+10\right)\)

\(=-\left(x-3\right)^2-10< 0\forall x\)

Bình luận (0)
PH
Xem chi tiết
VC
11 tháng 9 2017 lúc 21:15

bài 1) 

ta có \(\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)

=> \(a^2+b^2+1\ge ab+a+b\)

Bình luận (0)
PH
11 tháng 9 2017 lúc 21:29

ý 1 mk làm òi còn 2 ý kia chưa làm thui

Bình luận (0)
VC
11 tháng 9 2017 lúc 21:37

bài 3 nhé 

ta có với x,y >0 ÁP dụng bđt cô si ta có 

\(x^3+x^3+y^3\ge3x^2y;y^3+y^3+x^3\ge3y^2x\)

cộng tưngf vế và rút gọn thì ta có \(x^3+y^3\ge x^2y+xy^2=xy\left(x+y\right)\)

\(\Rightarrow\frac{x^3+y^3}{xy}\ge x+y\)

\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\)

Bình luận (0)
DY
Xem chi tiết
NM
30 tháng 8 2021 lúc 9:35

\(x^2+y^2-2x-4y-4=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2-9=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=9=0^2+3^2=0^2+\left(-3\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y-2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=0\\y-2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\y-2=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow-2\le x\le4\left(y\in R\right)\)

Ta có \(S=3x+4y\)

Mà \(x\ge-2;y\ge-1\Leftrightarrow S\ge3\cdot\left(-2\right)+4\cdot\left(-1\right)=-6-4=-10\)

Vậy GTNN của S là \(-10\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

Bình luận (0)
AH
30 tháng 8 2021 lúc 9:41

Lời giải:

ĐKĐB $\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)-9=0$

$\Leftrightarrow (x-1)^2+(y-2)^2-9=0$

$\Rightarrow (x-1)^2=9-(y-2)^2\leq 9$

$\Rightarrow -3\leq x-1\leq 3$

$\Leftrightarrow -2\leq x\leq 4$

-------------

Đặt $x-1=a; y-2=b$ thì bài toán trở thành:
Cho $a,b$ thực thỏa mãn $a^2+b^2=9$

Tìm min $S=3a+4b+11$

Áp dụng BĐT Bunhiacopxky:

$(3a+4b)^2\leq (a^2+b^2)(3^2+4^2)=9.25$

$\Rightarrow -15\leq 3a+4b\leq 15$

$\Rightarrow 3a+4b\geq -15$

$\Rightarrow S=3a+4b+11\geq -4$

Vậy $S_{\min}=-4$ khi $x=\frac{-4}{5}; y=\frac{-1}{5}$

 

Bình luận (0)
NN
Xem chi tiết
NT
8 tháng 7 2022 lúc 10:04

a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

b: \(x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

c: \(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)

Bình luận (0)
H24
Xem chi tiết
HL
Xem chi tiết
TT
10 tháng 2 2019 lúc 9:07

câu B nhé , vẽ hàm số là sẽ thấy

Hỏi đáp Toán

Bình luận (0)
TP
Xem chi tiết
HT
31 tháng 3 2017 lúc 14:21

= x^2 - 2.1/2x + 1/4 - 1/4 +1/2

=(x-1/2)^2 + 1/4 >o với mọi x

Bình luận (0)
NK
Xem chi tiết
H24
8 tháng 10 2019 lúc 15:07

a)\(x^2-2xy+y^2+1=\left(x+y\right)^2+1\ge1>0\)

b)\(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

c)\(9x^2+12x+10=\left(9x^2+12x+4\right)+6=\left(3x+2\right)^2+6\ge6>0\)

d)\(3x^2-x+1=2x^2+\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=2x^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0`\)

Bình luận (0)
H24
Xem chi tiết
H24
25 tháng 7 2019 lúc 11:29

\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)

\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)

\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)

\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)

\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)

Bình luận (0)
H24
25 tháng 7 2019 lúc 13:50

Cách khác câu e:

\(x^2-xy+y^2=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\forall xy\) (đpcm)

Bình luận (0)