Những câu hỏi liên quan
TP
Xem chi tiết
LD
2 tháng 7 2017 lúc 5:45

b) Ta có : 2x + 3y + 3xy = 7

=> 3y(1 + x) + 2x + 2 = 9

=> 3y(1 + x) + 2(x + 1) = 9

=> (x + 1)(3y + 2) = 9

=> x + 1 và 3y + 2 thuộc Ư(9) = {-9;-3;-1;1;3;9}

+) x + 1 = -9 thì 3y + 2 = -1 

=> x = -10 ; y = -1

+)  x + 1 = -1 thì 3y + 2 = -9

=> x = -2 ; y = \(\frac{-11}{3}\) (loại)

+)  x + 1 = -3 thì 3y + 2 = -3

=> x = -4 ; y = \(-\frac{5}{3}\)(loại)

+)  x + 1 = 1 thì 3y + 2 = 9

=> x = 0 thì y = \(\frac{7}{3}\)(loại)

+  x + 1 = 9 thì 3y + 2 = 1

=> x = 8 ; y = \(-\frac{1}{3}\)(Loại)

+ x + 1 = 3 thì 3y + 2 = 3

=> x = 2 ; y = \(\frac{1}{3}\)(Loại)

Vậy x = -10 và y = -1

Bình luận (0)
H24
Xem chi tiết
NT
6 tháng 1 2024 lúc 13:58

a: \(\left(x+5\right)^2>=0\forall x\)

\(\left(2y-8\right)^2>=0\forall y\)

Do đó: \(\left(x+5\right)^2+\left(2y-8\right)^2>=0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+5=0\\2y-8=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)

b: \(\left(x+3\right)\left(2y-1\right)=5\)

=>\(\left(x+3\right)\left(2y-1\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)

=>\(\left(x+3;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-2;3\right);\left(2;1\right);\left(-4;-2\right);\left(-8;0\right)\right\}\)

Bình luận (0)
HN
Xem chi tiết
TT
Xem chi tiết
LF
10 tháng 11 2016 lúc 22:51

Bài 2:

\(A=-2x^2+3x-5\)

\(=-2\left(x^2+\frac{3x}{2}-\frac{5}{2}\right)\)

\(=-2\left(x^2-\frac{3x}{2}+\frac{9}{16}\right)-\frac{31}{8}\)

\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8}\)

Dấu = khi \(-2\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy \(Max_A=-\frac{31}{8}\Leftrightarrow x=\frac{3}{4}\)

Bình luận (0)
LF
10 tháng 11 2016 lúc 22:49

Bài 1:

a)x2-4x2y+4xy

=x(x-4xy+y)

b)đề sai

Bình luận (0)
ND
11 tháng 11 2016 lúc 6:01

Bài 3:

3yx + 6x - y = 7

<=> x(3y+6) - (3y+6) = 27

<=> (3y+6)(x+1) = 27

Ta có bảng sau:

x+1 1-13-39-927-27
3y+6 27-279-9

3

-31-1
x 0-22-48-1026-28
y 7-111-5-1-3\(-\frac{5}{3}\)\(-\frac{7}{3}\)

Vậy...

Bình luận (1)
TL
Xem chi tiết
TL
2 tháng 2 2017 lúc 12:53

ủa , ms vào học kì 2 , mà sao có dạng này vậy bạn ?

Bình luận (0)
TL
2 tháng 2 2017 lúc 12:58

a) x = 4 ; y = 7 

Thay x = 4 ; y = 7 ta có : ( 4 - 1 ) . ( 4 + 7 ) = 33

                                         3      .      11     = 33

b) x = 4 ; y = 3 

Thay x =4 ; y = 3 ta có : 4.3 - 3.3 + 4 =  7

                                     12 -   9  +  4  = 7

                                         3       +  4  = 7

Bình luận (0)
T1
2 tháng 2 2017 lúc 13:00

sao ở mik chưa học nhỉ ?

Bình luận (0)
LP
Xem chi tiết
DH
31 tháng 1 2017 lúc 15:35

Vì 14 ⋮ 2 => 2x + 3y ⋮ 2

Mà 2x ⋮ 2 => 3y ⋮ 2 

Mà ( 2; 3) = 1 => y ⋮ 2

2x + 3y = 14 => 3y ≤ 14

=> y ≤ 14 / 3 => y ≤ 4 => y = 2 ; 4

Với y = 2 <=> 2x + 6 = 14 => 2x = 8 => x = 4

Với y = 4 <=> 2x + 12 = 14 => 2x = 2 => x = 1

Vậy ( x;y ) = { ( 4;2 ) ; ( 1 ; 4 ) }

Bình luận (0)
LP
31 tháng 1 2017 lúc 15:41

cam on

Bình luận (0)
TK
Xem chi tiết
NH
26 tháng 12 2022 lúc 22:31

a, 3x ( y+1) + y + 1 = 7

(y+1)(3x +1) =7

th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)

th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)

th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)

Vậy (x,y)= (2 ;0);  (0; 6)

b, xy - x + 3y - 3 = 5

   (x( y-1) + 3( y-1) = 5

          (y-1)(x+3) = 5

 th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)

th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)

th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)

vậy (x, y) = ( 8; 2); ( -8; 0);  (-2; 6); (-4; -4)

c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1

⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1  ⋮ 2x + 1

th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8

th2: 2x+ 1 = 1=> x =0; y = 7

th3: 2x+1 = -3 => x =  x=-2  => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3 

th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2

th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2

th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1

th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1

th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0

kết luận

(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)

 

    

 

 

 

   

Bình luận (0)
NM
26 tháng 12 2022 lúc 21:46

 

3xy−2x+5y=293xy−2x+5y=29

9xy−6x+15y=879xy−6x+15y=87

(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77

3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77

(3y−2)(3x+5)=77(3y−2)(3x+5)=77

⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77

Ta có bảng giá trị sau:

Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}

 

Bình luận (0)
QT
Xem chi tiết
H24
Xem chi tiết
NT
12 tháng 7 2023 lúc 12:42

\(x\left(1-3y\right)+1-3y-1=-4\)

\(\left(1-3y\right)\left(x+1\right)=-3\)

⇒ (x+1) và (1-3y) ϵ {-1;1;-3;3}

\(\Rightarrow\left(x;y\right)\in\left\{\left(-2;-\dfrac{2}{3}\right);\left(0;\dfrac{4}{3}\right);\left(-4;0\right);\left(2;\dfrac{2}{3}\right)\right\}\)

Bình luận (0)