Với giá trị nào của x thì căn thức sau có nghĩa:
\(\sqrt{\frac{-3}{4-5x}}\)
Với giá trị nào của x thì căn thức sau có nghĩa:
\(\sqrt{\frac{-3}{4-5x}}\)
\(\sqrt{\frac{-3}{4-5x}}\) có nghĩa
\(\Leftrightarrow\frac{-3}{4-5x}\ge0\)
\(\Leftrightarrow4-5x< 0\left(-3< 0\right)\)
\(\Leftrightarrow-5x< -4\)
\(\Leftrightarrow x>\frac{4}{5}\)
Vậy.............
\(\sqrt{\frac{-3}{4-5x}}\) Có nghĩa :
\(\Leftrightarrow\frac{-3}{4-5x}\ge0\)
\(4-5x< 0\) ( Vì -3 < 0 và 4 - 5x là mẫu số )
\(-5x< -4\)
\(x>\frac{4}{5}\)
Với giá trị nào của x thì căn thức sau có nghĩa :
a)\(\frac{1}{\sqrt{x^2-5x+6}}\)
Để Giá trị của x có nghĩa thì:
\(\sqrt{x^2-5x+6}>0\) => \(x^2-5x+6>0\)
Phân tích Mẫu Thức ta có:
\(\sqrt{x^2-5x+6}=\sqrt{x^2-2x-3x+6}=\sqrt{\left(x^2-2x\right)-\left(3x-6\right)}\)
\(=\sqrt[]{x\left(x-2\right)-3\left(x-2\right)}=\sqrt{\left(x-2\right)\left(x-3\right)}\)
Để mẫu thức khác 0 thì :
\(\left(x-2\right)\ne0\) hoặc \(\left(x-3\right)\ne0\)
\(\Leftrightarrow\) \(x\ne2\)hoặc \(x\ne3\)(1)
Để mẫu thức ko âm ( lớn hơn 0 )
*Trường hợp 1: \(x-2>0\)hoặc \(x-3>0\)
=> \(x>2\)hoặc \(x>3\)(2)
*Trường hợp 2: \(x-2< 0\)hoặc \(x-3< 0\)
=> \(x< 2\)hoặc \(x< 3\)(3)
Từ (1),(2) và (3) ta có:
=> \(x>3\) hoặc \(x< 2\)
Chúc bạn học tốt :#
ĐK: \(x^2-5x+6>0\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(x-3\right)>0\)
TH1: \(\hept{\begin{cases}x-2>0\\x-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>2\\x>3\end{cases}}\)\(\Leftrightarrow\)\(x>3\)
TH2: \(\hept{\begin{cases}x-2< 0\\x-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 2\\x< 3\end{cases}}\)\(\Leftrightarrow\)\(x< 2\)
Vậy \(\orbr{\begin{cases}x>3\\x< 2\end{cases}}\)
a, với giá trị nào của a thì căn thức sau có nghĩa \(\sqrt{\frac{a^2+1}{1-2a}}\)
b, biểu thức sau xác định với giá trị vào của x \(\sqrt{5x^2+4x+7}\)
với giá trị nào của x thì căn thức sau có nghĩa
\(\sqrt{\dfrac{x^2+2x+4}{2x-3}}\)
Với giá trị nào của x thì căn thức sau có nghĩa: \(\sqrt{\left(3-5x\right)\left(x-6\right)}\)
\(\sqrt{\left(3-5x\right)\left(x-6\right)}\ge0\)
\(< =>TH1:3-5x\ge0;x-6\ge0\)
\(\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}}\)pt vô nghiệm
\(TH2:3-5x< 0;x-6< 0\)
\(\hept{\begin{cases}3-5x< 0\\x-6< 0\end{cases}\hept{\begin{cases}x>\frac{3}{5}\\x< 6\end{cases}}}\)
để căn thức đxđ thì\(\frac{3}{5}< x< 6\)
\(\sqrt{\left(3-5x\right)\left(x-6\right)}\) có nghĩa \(\Leftrightarrow\left(3-5x\right)\left(x-5\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}3-5x\le0\\x-6\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}\)(vô lí) Hoặc \(\hept{\begin{cases}x\ge\frac{3}{5}\\x\le6\end{cases}}\)
\(\Leftrightarrow\frac{3}{5}\le x\le6\)
bài 1 Với giá trị nào của x thì căn thức sau có nghĩa:
a) \(\sqrt{\left(x-2\right)\left(x-6\right)}\)
b) \(\sqrt{1-x^2}\)
\(\sqrt{-5x-10}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge6\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(-1\le x\le1\)
c: ĐKXĐ: \(x\le-2\)
a. \(\sqrt{\left(x-2\right)\left(x-6\right)}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-6\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ge6\end{matrix}\right.\) \(\Leftrightarrow x\ge6\)
b. \(\sqrt{1-x^2}\) có nghĩa \(\Leftrightarrow1-x^2\ge0\) \(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow-1\le x\le1\)
\(\sqrt{-5x-10}\) có nghĩa \(\Leftrightarrow-5x-10\ge0\Leftrightarrow-5x\ge10\Leftrightarrow x\ge-2\)
Với giá trị nào của x thì căn thức sau có nghĩa?
\(\sqrt{\frac{2}{3}x}+1\)
cần 2/3x lớn hơn hoặc =0
=>x lớn hơn hoặc bằng 0
Với giá trị nào của x thì các căn thức sau có nghĩa:
a, \(\sqrt{5x-10}\)
b, \(\sqrt{x^2-3x+2}\)
c, \(\sqrt{\dfrac{x+3}{5-x}}\)
d, \(\sqrt{x^2+4x-4}\)
a) ĐKXĐ: \(x\ge2\)
b) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
c) ĐKXĐ: \(\dfrac{x+3}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x+3}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow-3\le x< 5\)
Với giá trị nào của x thì căn thức sau có nghĩa :
\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}\)
\(\Leftrightarrow3x-2\ge0\)
hay \(x\ge\dfrac{2}{3}\)