Giải phương trình sau: 3+căn(2x-3)=x
(Căn x+1)(2 căn x-3)-2x=-4
Căn (2x+1)- x+1= 0
Giải pt:
1) Căn(x^2 - x + 2) + 1 = căn(10 - x^2 + x)
2) 4căn(x) - 2 căn(2 - x) + x - 4 căn( 2x - x^2) + 1 =0
3) x^2 + 3x - 1= (x+2) căn(x^2 + x - 1)
4) 3x^2 + 4x + 2 = 3(x+2) căn(x^2 - 1)
Giải phương trình
Căn(2x+1)- căn(x+3)+ căn(2x-1)- căn(x-1)=0
pt <=> \(\sqrt{2x+1}-\sqrt{x+3}=\sqrt{x-1}-\sqrt{2x-1}\)
=> \(3x+4-2\sqrt{\left(2x+1\right)\left(x+3\right)}=3x-2-2\sqrt{\left(x-1\right)\left(2x-1\right)}\)
=> \(3-\sqrt{\left(2x+1\right)\left(x+3\right)}=-\sqrt{\left(x-1\right)\left(2x-1\right)}\)
=> \(9+\left(2x+1\right)\left(x+3\right)-6\sqrt{\left(2x+1\right)\left(x+3\right)}=\left(x-1\right)\left(2x-1\right)\)
<=> \(2x^2+7x+12-6\sqrt{\left(x+3\right)\left(2x+1\right)}=2x^2-3x+1\)
<=> \(10x+11=6\sqrt{\left(x+3\right)\left(2x+1\right)}\)
=> \(\left(10x+11\right)^2=36\left(x+3\right)\left(2x+1\right)\)
<=> \(100x^2+220x+121=36\left(2x^2+7x+3\right)\)
<=> \(28x^2-32x+13=0\)
<=> \(196x^2-224x+91=0\)
<=> \(\left(14x-8\right)^2+27=0\) (*)
Có: \(\left(14x-8\right)^2+27\ge27>0\)
=> PT (*) VÔ NGHIỆM.
VẬY PT \(\sqrt{2x+1}-\sqrt{x+3}=\sqrt{x-1}-\sqrt{2x-1}\) VÔ NGHIỆM.
đk x3
ta có
do cả hai vế lớn hơn nên cả bình phương cả 2 vế
pt<=> 2x+1=x+x-3+2<=> 2=
<=> 4=x^2-3x
<=>x^2-3x-4=0
<=> (x-4)(x+1)=0
<=> x=4(do x
Vậy S={4}
Giải phương trình
a) căn (x + 1) - căn (x - 2) = 1
b) căn (4 - 2 căn 3) - ( x2 - 2x căn 3 + 3) = 0
\(ĐK:x\ge2\)
\(\sqrt{x+1}=\sqrt{x-2}+1\)
\(\Leftrightarrow x+1=x-1+2\sqrt{x-2}\)
\(\Leftrightarrow2\sqrt{x-2}=2\Leftrightarrow x=3\)
Giải phg trình
a) căn(2x+1)- căn(x+3)+ căn(2x-1)- căn(2x-1)=0
b) x- căn(2x-1)+ (x-1)^2=0
Mong các bn giúp đỡ mình
a) câu a bạn cho 2 cái căn ở cuối làm j thế
hiệu bằng 0 rồi mà?
Giải phương trình sau:
căn(x^2 - 1/4*căn(x^2 + x + 1/4)) = 1/2*(2x^3 + x^2 + 2x + 1)
giải hệ phương trình sau : 2(x^2-2x) + căn(y+1)=0
3(x^2-2x) -2.căn(y+1)+7=0
giải phương trình
căn x+3 - 2 căn x = căn 2x+2 - căn 3x+1
Em trục căn thức:
\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)
<=> \(\frac{-3x+3}{\sqrt{x+3}+2\sqrt{x}}=\frac{-x+1}{\sqrt{2x+2}+\sqrt{3x+1}}\)
=> nhân tử chung là -x + 1 . Tự làm tiếp nhé!
làm như cô thì vẫn cần phải đánh giá rất khó chịu nhé
\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\left(ĐKXĐ:x\ge0\right)\)
\(< =>\sqrt{x+3}-\sqrt{2x+2}+\sqrt{3x+1}-2\sqrt{x}=0\)
\(< =>\frac{\sqrt{x+3}^2-\sqrt{2x+2}^2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{\sqrt{3x+1}^2-4\sqrt{x}^2}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\frac{x+3-2x-2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{3x+1-4x}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\frac{1-x}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1-x}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\left(1-x\right)\left(\frac{1}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1}{\sqrt{3x+1}+2\sqrt{x}}\right)=0< =>x=1\)
1. | 3-2x| = 1
2. | 2x2 - x| = | 3x2 + 1|
3. căn 4-3x = 1- x
4. căn 2x+1 - căn x-3 = căn 4x + 3 - căn 3x+4
bài 2: tìm m để phương trình sau có 1 nghiệm âm.
(m+1)x2+ 2(m-3)x + m = 0
giúp mình với ạ
3-2x=1
2x=2
x=1
câu 1 là |3-2x|= 1 - x nha :< mình viết thiếu
giải phương trình sau: x^4-2x^3+x-căn (2x^2-2x)=0
Đầu tiên ta đặt dk 2x^2 - 2x >=0 <=> x<=0 và x>=1
x^4 -2x^3+x - căn(2x^2-2x)=0
<=> x(x^3-2x^2+1) - căn[2x(x-1)]=0
<=>x[(x^3-x^2)-(x^2-1)] - căn[2x(x-1)]=0
<=>x[x^2(x-1)-(x-1)(x+1)] - căn[2x(x-1)]=0
<=>x(x-1)(x^2-x-1) - căn[2x(x-1)]=0
<=>x(x-1)[x(x-1)-1] - căn[2x(x-1)]=0
<=>[x(x-1)]^2 -x(x-1) - căn[2x(x-1)]=0(*)
Nhân cả hai vế của pt(*) cho 4 ta được:
4[x(x-1)]^2 -4x(x-1) - 4căn[2x(x-1)]=0(**)
Đến đây ta đặt t=căn[2x(x-1)] điều kiện t>=0 ta được pt sau
t^4 -2t^2 -4t =0
<=> t(t^3 - 2t -4)=0
<=> t=0 hoặc t^3-2t -4=0
với t=0 thế vào t= căn[2x(x-1)]=0 => x=0 hoặc x=1
với t^3-2t-4=0 ta thấy pt này có một nghiệm t=2
<=> (t-2)(t^2+2t+2)=0(ở đây ta thực hiện chia t^3-2t-4 cho t-2)
<=>t=2
thế t=2 vào t=căn[2x(x-1)]=2 ta tìm được x=-1 hoặc x=2
thỏa mãn dk x<=0 và x>=1
Vậy pt đã cho có các nghiệm sau x=0; x=1; x=-1; x=2
Kết luận: x=0; x=1; x=-1; x=2