Những câu hỏi liên quan
PT
Xem chi tiết
NT
7 tháng 8 2017 lúc 11:54

ta thấy:

2^2014<2^2014+2

=>\(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+1}{2^{2014}+2}\)

vậy......

Bình luận (0)
LP
7 tháng 8 2017 lúc 11:58

Có : 22014 + 1 > 22014 nên \(\frac{2^{2014}+1}{2^{2014}}\)> 1 .

22104 + 1 < 22014 + 2 nên \(\frac{2^{2014}+1}{2^{2014}+2}\)< 1.

=> \(\frac{2^{2014}+1}{2^{2014}}\)>\(\frac{2^{2014}+1}{2^{2014}+2}\)

Bình luận (0)
LP
7 tháng 8 2017 lúc 12:01

1 cách dễ hơn nè:

Có 22014+1 = 22014 + 1 ( tử và tử bằng nhau )

22014<22014+2

=>\(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+1}{2^{2014}+2}\)

Bình luận (0)
HV
Xem chi tiết
LD
2 tháng 7 2017 lúc 14:41

Ta có : A = \(\frac{2^{2014}+1}{2^{2014}}=1+\frac{1}{2^{2014}}\) 

           B = \(\frac{2^{2014}+2}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)

Vì : \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)

Nên A > B 

Bình luận (0)
HV
2 tháng 7 2017 lúc 14:48

Viết hẳn từng bước đi bạn

Bình luận (0)
LD
2 tháng 7 2017 lúc 14:55

Được thôi ban :

Ta có :  \(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)

            \(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)

Đó ok chưa 

Bình luận (0)
PH
Xem chi tiết
LL
Xem chi tiết
SG
27 tháng 3 2017 lúc 21:22

Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B

Bình luận (0)
BN
27 tháng 3 2017 lúc 21:27

Ta có:

2014A=20142014+ 2014/20142014+1=1+2013/20142014+1

2014B=20142013+2014/20142013+1=1+2013/20142013+1

vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B

suy ra A<B

Bình luận (0)
LH
Xem chi tiết
VH
3 tháng 5 2016 lúc 22:12

\(\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)

\(\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)

so sánh \(\frac{1}{2^{2014}}\) và \(\frac{1}{2^{2014}+1}\)

ta có

\(2^{2014}<2^{2014}+1\) 

nên \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}=>1+\frac{1}{2014}>1+\frac{1}{2014+1}=>\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+2}{2^{2014}+1}\)

Bình luận (0)
ND
Xem chi tiết
TM
1 tháng 7 2016 lúc 17:08

Sai rồi nhé bạn 

Bình luận (0)
ND
1 tháng 7 2016 lúc 17:09

trà my Thế bạn làm thế nào

Bình luận (0)
TM
1 tháng 7 2016 lúc 17:26

Đầu tiên bạn phải chứng minh: nếu a/b>1 thì a/b>(a+m)/(b+m)

Để mình chứng minh cho luôn nè:

A/b>1

=>a>b

=>am>bm (m thuộc N)

=>ab+am>ab+bm

=>a(b+m)>b(a+m)

=>[a(b+m)]/[b(b+m)]>[b(a+m)]/[b(b+m)]

=>a/b>(a+m)/(b+m)

Rồi bạn cộng tử của A với 2013 và mẫu của A với 2013, khi đó ta được 1 phân số bé hơn A. Rút gọn phân số đó thì ta được B.

Vậy suy ra A>B

Bình luận (0)
TA
Xem chi tiết
NN
Xem chi tiết
BC
13 tháng 1 2017 lúc 17:52

bạn xem lại đề thử có sai không?

Bình luận (0)
AN
13 tháng 1 2017 lúc 19:02

Ta có:

\(\frac{2015^2-2014^2}{2015^2+2014^2}-\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)

\(=\frac{2015+2014}{2015^2+2014^2}-\frac{1}{\left(2015+2014\right)^2}\)

Ta thấy phân số thứ nhất có tử lớn hơn phân số thứ 2 và có mẫu bé hơn nên phân số thứ nhất > phâm số thứ 2

Hay \(\frac{2015^2-2014^2}{2015^2+2014^2}>\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)

Bình luận (0)
ND
Xem chi tiết
KZ
23 tháng 4 2016 lúc 20:27

B = 201410+2/201411+2 < 201411+2+4026 / 201412+2+4026

                                        = 201411+4028/201412+4028

                                        = 2014(201410+2)/2014(201411+2)

                                            = 201410+2/201411+2 = A

=> A > B

Bình luận (0)